首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

2.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

3.
A multi-base encoding strategy is used in a one word approach to surface-based DNA computation. In this designed DNA model system, a set of 16 oligonucleotides, each a 16mer, is used with the format 5'-FFFFvvvvvvvvFFFF-3' in which 4-8 bits of data are stored in eight central variable ('v') base locations, and the remaining fixed ('F') base locations are used as a word label. The detailed implementations are reported here. In order to achieve perfect discrimination between each oligonucleotide, the efficiency and specificity of hybridization discrimination of the set of 16 oligonucleotides were examined by carrying out the hybridization of each individual fluorescently tagged complement to an array of 16 addressed immobilized oligonucleotides. A series of preliminary hybridization experiments are presented and further studies about hybridization, enzymatic destruction, read out and demonstrations of a SAT problem are forthcoming.  相似文献   

4.
Sequence‐specific oligonucleotide hybridization (SSOH, ‘dot‐blotting’) is a widely employed method of typing single nucleotide polymorphisms (SNPs), but it is often compromised by lack of allelic differentiation. We describe a novel improvement to SSOH that incorporates an additional mismatch into the oligonucleotide probe using the universal base analogue 3‐nitropyrrole. This method greatly increases allelic differentiation compared to standard SSOH where oligonucleotides contain only SNP‐defining base changes. Moreover, stringency of the hybridisation is predictably maintained over a wide range of temperatures, which can be calculated empirically, thus facilitating the genotyping of multiple SNPs using similar conditions. This improved method increases the usefulness of hybridisation‐based methods of rapid genotyping of SNPs and may have implications for array methodologies.  相似文献   

5.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

6.
Sequence-specific oligonucleotide hybridization (SSOH, 'dot-blotting') is a widely employed method of typing single nucleotide polymorphisms (SNPs), but it is often compromised by lack of allelic differentiation. We describe a novel improvement to SSOH that incorporates an additional mismatch into the oligonucleotide probe using the universal base analogue 3-nitropyrrole. This method greatly increases allelic differentiation compared to standard SSOH where oligonucleotides contain only SNP-defining base changes. Moreover, stringency of the hybridisation is predictably maintained over a wide range of temperatures, which can be calculated empirically, thus facilitating the genotyping of multiple SNPs using similar conditions. This improved method increases the usefulness of hybridisation-based methods of rapid genotyping of SNPs and may have implications for array methodologies.  相似文献   

7.
Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia.  相似文献   

8.
Effects of dangling ends on duplex yield have been assessed by hybridisation of oligonucleotides to an array of oligonucleotides synthesised on the surface of a solid support. The array consists of decanucleotides and shorter sequences. One of the decanucleotides in the array was fully complementary to the decanucleotide used as solution target. Others were complementary over seven to nine bases, with overhangs of one to three bases. Duplexes involving different decanucleotides had different overhangs at the 3' and 5' ends. Some duplexes involving shorter oligonucleotides had the same regions of complementarity as these decanucleotides, but with fewer overhanging bases. This analysis allows simultaneous assessment of the effects of differing bases at both 5' and 3' ends of the oligonucleotide in duplexes formed under identical reaction conditions. The results indicate that a 5' overhang is more stabilising than a 3' overhang, which is consistent with previous results obtained with DNA overhangs. However, it is not clear whether this is due to the orientation of the overhang or to the effect of specific bases.  相似文献   

9.
A novel method for the analysis of oligonucleotide-oligonucleotide interactions is described. Oligonucleotides of different sequence are synthesised in situ as stripes on the surface of a glass slide (see accompanying paper). Multiple hybridizations are then carried out on each oligonucleotide simultaneously to determine the dependence of oligonucleotide duplex formation on duplex length, base composition, hybridisation solvent and sequence complexity.  相似文献   

10.

Background  

The repair of single base mutations in mammalian genes can be directed by single-stranded oligonucleotides in a process known as targeted gene repair. The mechanism of this reaction is currently being elucidated but likely involves a pairing step in which the oligonucleotide align in homologous register with its target sequence and a correction step in which the mutant base is replaced by endogenous repair pathways. This process is regulated by the activity of various factors and proteins that either elevate or depress the frequency at which gene repair takes place.  相似文献   

11.
12.
Oligonucleotide dendrimers: stable nano-structures.   总被引:3,自引:1,他引:2       下载免费PDF全文
DNA dendrimers with two, three, six, nine or 27 arms were reassociated as complementary pairs in solution or with an array of complementary oligonucleotides on a solid support. In all cases, duplex stabilities were greater than those of unbranched molecules of equal length. A theoretical treatment for the process of dissociation of dendrimers explains the major properties of the complexes. The favourable features of DNA dendrimers-their enhanced stability and the simple predictability of their association behaviour-makes them promising as building blocks for the 'bottom up' approach to nano-assembly. These features also suggest applications in oligonucleotide array/DNA chip technology when higher hybridisation temperatures are required, for example, to melt secon-dary structure in the target.  相似文献   

13.
Antisense oligonucleotides provide a powerful tool in order to determine the consequences of the reduced expression of a selected target gene and may include target validation and therapeutic applications. Methods of predicting optimum antisense sites are not always effective. We have compared the efficacy of antisense oligonucleotides, which were selected in vitro using random combinatorial oligonucleotide libraries of differing length and complexity, upon putative target sites within TNFα mRNA. The relationship of specific target site accessibility and oligonucleotide efficacy with respect to these parameters proved to be complex. Modification of the length of the recognition sequence of the oligonucleotide library illustrated that independent target sites demonstrated a preference for antisense oligonucleotides of a defined and independent optimal length. The efficacy of antisense oligonucleotide sequences selected in vitro paralleled that observed in phorbol 12-myristate 13-acetate (PMA)-activated U937 cells. The application of methylphosphonate:phosphodiester chimaeric oligonucleotides to U937 cells reduced mRNA levels to up to 19.8% that of the untreated cell population. This approach provides a predictive means to profile any mRNA of known sequence with respect to the identification and optimisation of sites accessible to antisense oligonucleotide activity.  相似文献   

14.
Targeted gene repair consists of at least two major steps, the pairing of an oligonucleotide to a site bearing DNA sequence complementarity followed by a nucleotide exchange reaction directed by the oligonucleotide. In this study, oligonucleotides with different structures were designed to target a stably integrated (mutant) enhanced green fluorescent protein (EGFP) gene and used to direct the repair of a single base mutation. We show that the efficiency of correction is influenced by the degree of DNA sequence homology existing between the oligonucleotide and target gene. Correction is reduced when a heterologous stretch of DNA sequence is placed in the center of the oligonucleotide and the mismatched base pair is then formed near the terminus. The negative impact of heterology is dependent on the type of DNA sequence inserted and on the size of the heterologous region. If the heterologous sequence is palindromic and adopts a secondary structure, the negative impact on the correction frequency is removed, and wild-type levels of repair are restored. Although differences in the efficiency of correction are observed in various cell types, the effect of structural changes on gene repair is consistent. These results reveal the existence of a directional-specific repair pathway that relies on the pairing stability of a bilateral complex and emphasize the importance of sequence homology between pairing partners for efficient catalysis of gene repair.  相似文献   

15.
Abstract A 277-bp long DNA fragment, Ba813, was isolated from an avirulent Bacillus anthracis strain 7700 genomic library. Two oligonucleotides derived from the Ba813 sequence were used as primers in polymerase chain reaction tests on genomic DNA from 28 Bacillus anthracis and from 33 heterologous bacteria strains. A specific, 152-bp long DNA fragment was amplified only when Bacillus anthracis DNA was used as the target. The amplified product was analysed by non-radioactive sandwich hybridisation in microtiter plates using two oligonucleotides. The capture oligonucleotide C1 was covalently linked onto aminated wells of microtiter plates. The detection oligonucleotide D3 was labelled with biotine. The hybrid molecules were detected by avidine conjugated with alkaline phosphatase and chromogenic substrate. Amplification of Ba813 sequence may provide the basis for rapid and reliable assay for the detection and identification of Bacillus anthracis .  相似文献   

16.
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.  相似文献   

17.
In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3′ universal fluorescence dye. A 5′ thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3′ fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.  相似文献   

18.
H Hakala  P Virta  H Salo    H Lnnberg 《Nucleic acids research》1998,26(24):5581-5588
Porous, uniformly sized (50 micrometer) glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as a solid phase to construct a sandwich type hybridization assay that allowed simultaneous detection of up to six oligonucleotides from a single sample. The assay was based on categorization of the particles by two organic prompt fluorophores, viz. fluorescein and dansyl, and quantification of the oligonucleotide hybridization by time-resolved fluorometry. Accordingly, allele-specific oligodeoxyribonucleotide probes were assembled on the particles by conventional phosphoramidite strategy using a non-cleavable linker, and the category defining fluorescein and/or dansyl tagged building blocks were inserted in the 3'-terminal sequence. An oligonucleotide bearing a photoluminescent europium(III) chelate was hybridized to the complementary 3'-terminal sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound allele-specific probes via the 5'-terminal sequence of the target. After hybridization each individual particle was subjected to three different fluorescence intensity measurements. The intensity of the prompt fluorescence signals of fluorescein and dansyl defined the particle category, while the europium(III) chelate emission quantified the hybridization. The length of the complementary region between the target oligonucleotide and the particle-bound probe was optimized to achieve maximal selectivity. Furthermore, the kinetics of hybridization and the effect of the concentration of the target oligomer on the efficiency of hybridization were evaluated. By this approach the possible presence of a three base deletion (DeltaF508), point mutation (G542X) and point deletion (1078delT) related to cystic fibrosis could unequivocally be detected from a single sample.  相似文献   

19.
A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled "stacking oligonucleotide," and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the "capture probe" and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3'-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivatized glass. "Operating parameters" examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration: 1. Optimal mismatch discrimination with 9-mer probes occurs at 45 degrees C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45 degrees C. 2. At 25 degrees C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch. 3. The presence of a phosphate group on the 5'-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied. These results provide a motivation for continued development of the stacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996) Proc. Natl. Acad. Sci. USA 93, 4913-4918; Parinov et al. (1996) Nucleic Acids Res. 24, 2998-3004).  相似文献   

20.
In this paper, a simple and useful approach for DNA sensing based on surface plasmon resonance (SPR) transduction is reported. A new DNA sample pre-treatment has been optimised to allow fast and simple detection of hybridisation reaction between a target sequence in solution and a probe immobilised on the sensing surface. This pre-treatment consisted in a denaturation procedure of double stranded DNA containing the target sequence and was based on an high temperature treatment (95 degrees C, 5 min) followed by a 1 min incubation with small oligonucleotides. The oligonucleotides are designed to prevent the re-hybridising of the denatured strands, while enabling the target sequence to bind the immobilised probe. The important parameters of the procedure, i.e. incubation time, length and concentration of the oligonucleotides, have been studied in detail. The optimised DNA denaturation procedure has been successfully applied to the detection of amplified DNA with a commercially available SPR biosensor (Biacore X). DNA samples extracted from plant and human blood were tested after amplification by polymerase chain reaction (PCR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号