首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Key message

Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction.

Abstract

Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (?7.2 %), leaf rust (?8.4 %) and septoria tritici blotch (?9.3 %). Moreover, 69 hybrids significantly (P < 0.05) outyielded the best commercial inbred line variety underlining the potential of hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.  相似文献   

2.
3.

Key message

General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data.

Abstract

Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.
  相似文献   

4.

Key message

Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat.

Abstract

The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat–spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.
  相似文献   

5.
Summary Studies conducted at the International Rice Research Institute (IRRI) during 1980 and 1981 have shown up to 73% heterosis, 59% heterobeltiosis and 34% standard heterosis for yield in rice. The latter was estimated in comparison to commercial varieties: IR36 and IR42 (yield 4–5 t/ha in wet season trials and 7–8 t/ha in dry season trials). Generally speaking, absolute yield was lower and extent of standard heterosis was higher in wet season than in dry season with some exception. Yields up to 5.9 t/ha (22% standard heterosis) in the wet season and 10.4 t/ha (34% standard heterosis) in the dry season were obtained. Most of the hybrids performed better in some season while some performed better in both seasons. Hybrids showed better lodging resistance although they were 5–10 cm taller. F1 hybrids had significant positive correlations with the parental traits viz., yield (r = 0.446), tillering (r = 0.746), height (r = 0.810) and flowering (r = 0.843). Selection of parents among elite breeding lines on the basis of their per se yield performance, diverse origin and resistance to insects and diseases should give heterotic combination. Yield advantage of hybrids was due primarily to increase in number of spikelets per unit area even though tiller number was reduced. Grain weight was either the same or slightly higher. High yielding hybrids also showed significant heterosis and heterobeltiosis for total dry matter and harvest index. For commercial utilization of heterosis in rice, effective male sterility and fertility restoration systems are available and up to 45% natural outcrossing on male sterile lines has been observed. Consequently, F1 rice hybrid have been successfully developed and used in China. Prospects of developing hybrid rice varieties elsewhere appear bright especially in countries that have organized seed production, certification and distribution programs and where hybrid seed can be produced at a reasonable cost.  相似文献   

6.

Key message

The predicted future yield potential of hybrids was competitive with lines in the near future, but on a long term the competitiveness of hybrids depends on a number of factors.

Abstract

The change from line to hybrid breeding in autogamous crops is a recent controversial discussion among scientists and breeders. Our objectives were to employ wheat as a model to: (1) deliver a theoretical framework for the comparison of the selection gain of hybrid versus line breeding; (2) elaborate key parameters affecting selection gain in this comparison; (3) and evaluate the potential to modify these parameters in applied breeding programs. We developed a prediction model for future yield potential in both breeding methods as the sum of the population mean and the expected selection gain. The expected selection gain was smaller in hybrid than in line breeding and depended strongly on the hybrid seed production costs and the genetic variance available in hybrid versus line breeding. Owing to heterosis, the predicted future yield potential of hybrids was competitive with lines in the near future. On a long term, however, the competitiveness of hybrid compared to line breeding is questionable and depends on a number of factors. However, market specifications and political reasons might justify the current high interest in hybrid wheat breeding.  相似文献   

7.
Relative expression levels of selected genes from the Heterosis-Related Gene Database exhibiting more than 90% homology with sorghum were studied in hybrids and their respective parental lines for a better understanding on the molecular basis of heterosis. A high (27A × RS 673) and a low heterotic hybrid (7A × CB 26) of sorghum along with their parental lines were used for this purpose. Twenty (15 maize and 5 rice) genes exhibiting more than 90% homology with that of sorghum were identified. The maize genes ZmHG13, ZmHG16, and ZmhG19 exhibited more than fourfold increase over the male parent (RS 673) of high heterotic hybrid during booting stage, which started decreasing during flowering stage. Similarly, the rice genes OsHG1 and OsHG12 recorded >?2.5-fold increase. However, these genes recorded less than twofold increase during the same stage of the plant in the low heterotic hybrid. Notably, among the genes that exhibited higher expression in the highly heterotic hybrid were those coding for proteins, which were known to play crucial roles in the manifestation of heterosis in plants.  相似文献   

8.

Key message

Genetic relationships among Chinese maize germplasms reveal historical trends in heterotic patterns from Chinese breeding programs and identify line Dan340 as a potential genome donor for elite inbred line Zheng58.

Abstract

The characterization of the genetic relationships, heterotic patterns and breeding history of lines in maize breeding programs allows breeders to efficiently use maize germplasm for line improvement over time. In this study, 269 temperate inbred lines, most of which have been widely used in Chinese maize breeding programs since the 1970s, were genotyped using the Illumina MaizeSNP50 BeadChip, which contains 56,110 single-nucleotide polymorphisms. The STRUCTURE analysis, cluster analysis and principal coordinate analysis results consistently revealed seven groups, of which five were consistent with known heterotic groups within the Chinese maize germplasm—Domestic Reid, Lancaster, Zi330, Tang SPT and Tem-tropic I (also known as “P”). These genetic relationships also allowed us to determine the historical trends in heterotic patterns during the three decades from 1970 to 2000, represented by Mo17 from Lancaster, HuangZaoSi (HZS) from Tang SPT, Ye478 from Domestic Reid and P178 from Tem-tropic I heterotic groups. Mo17-related commercial hybrids were widely used in the 1970s and 1980s, followed by the release of HZS- and Ye478-related commercial hybrids in the 1980s and 1990s, and the introduction of Tem-tropic I group in the 1990s and 2000s. Additionally, we identified inbred line Dan340 as a potential genome donor for Zheng58, which is the female parent of the most widely grown commercial hybrid ZhengDan958 in China. We also reconstructed the recombination events of elite line HZS and its 14 derived lines. These findings provide useful information to direct future maize breeding efforts.
  相似文献   

9.

Aims

Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations including Echinochloa crus-galli (L.) Beauv. Indica rice cultivars can produce high yields and suppress barnyardgrass, but have not been commercially acceptable in the U.S. due to inferior agronomic traits and grain quality. Our objectives were to combine high yield and weed-suppressive characteristics from indica cultivars with commercially acceptable grain quality and plant types from long-grain cultivars grown in the southern U.S.

Methods

Crosses between indica and commercial tropical japonica (cv. Katy, and cv. Drew) rice were evaluated for weed suppression and agronomic traits in a breeding program.

Results

In some tests, the selection STG06L-35-061 was nearly as weed suppressive as PI 312777, the suppressive parent, and more suppressive than its tropical japonica parents. Its main crop yield is commercially acceptable, and intermediate between PI 312777 and Katy. Its milling quality and cooking quality are similar to long-grain commercial cultivars, and it has resistance to rice blast disease. Marker analyses identified introgressions from the indica parents on chromosomes 1 and 3 of STG06L-35-061 that require further analysis as possible sources of weed suppressive traits.

Conclusions

STG06L-35-061 might be suitable for organic rice or reduced input conventional systems.  相似文献   

10.
11.
In the past, rice hybrids with strong heterosis have been obtained empirically, by developing and testing thousands of combinations. Here, we aimed to determine whether heterosis of an elite hybrid could be achieved by manipulating major quantitative trait loci. We used 202 chromosome segment substitution lines from the elite hybrid Shanyou 63 to evaluate single segment heterosis (SSH) of yield per plant and identify heterotic loci. All nine detected heterotic loci acted in a dominant fashion, and no SSH exhibited overdominance. Functional alleles of key yield-related genes Ghd7, Ghd7.1, Hd1, and GS3 were dispersed in both parents. No functional alleles of three investigated genes were expressed at higher levels in the hybrids than in the more desirable parents. A hybrid pyramiding eight heterotic loci in the female parent Zhenshan 97 background had a comparable yield to Shanyou 63 and much higher yield than Zhenshan 97. Five hybrids pyramiding eight or nine heterotic loci in the combined parental genome background showed similar yield performance to that of Shanyou 63. These results suggest that dominance underlying functional complementation is an important contributor to yield heterosis and that heterosis assembly might be successfully promised by manipulating several major dominant heterotic loci.  相似文献   

12.
Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses.  相似文献   

13.
Identification of heterotic groups and patterns among breeding populations provides fundamental information to help plant breeders more knowledgeably manipulate heterosis. A diallel analysis was conducted among nine alfalfa (Medicago sativa L.) germplasms, commonly referred to as African, Chilean, Flemish, Indian, Ladak, M. falcata, M. varia, Peruvian, and Turkistan, which represent a significant proportion of the genetic diversity present in US cultivars. Heterotic responses were determined by evaluating forage yield of the germplasms and their 36 half-diallel hybrids in seeded plots that were harvested five times in each of 2 years. Commercially acceptable yields were obtained from some hybrids of unimproved parents, where at least one parent was adapted to the study environment. Variation among crosses was attributed primarily to general combining ability (GCA) effects; however, specific combining ability effects were also significant. GCA estimates for African, Chilean and Peruvian were positive, while those for Ladak, M. falcata, and M. varia were negative. Estimates for variety heterosis effects were positive for Peruvian and M. falcata and negative for Indian and M. varia. Significant mid-parent heterosis [(MPH) range of –21% to 55%] and high-parent heterosis [(HPH) range of –33% to 23%] was detected. M. falcata hybrids exhibited the highest MPH values. However, this likely reflects the poor yield of M. falcata per se in the study environment and consequently, low MPH values. Peruvian hybrids demonstrated the highest cross mean performance, significant positive MPH in all crosses, and positive HPH in five out of eight crosses. The results indicate that Peruvian should be recognized as a heterotic group. Alfalfa breeders may wish to explore opportunities for heterotic yield gains that are likely to exist in hybrids between the Peruvian germplasm and elite breeding populations, in particular, those adapted to the southwestern United States. MPH results suggest that alfalfa breeders may have capitalized on the heterotic response between Flemish and M. varia during past development of alfalfa synthetics adapted to the central and northern latitudes of the United States.  相似文献   

14.
Use of SSRs for establishing heterotic groups in subtropical maize   总被引:10,自引:0,他引:10  
Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objectives of our research were to: (1) investigate the relationship of simple sequence repeats (SSR) based genetic distances between populations and panmictic midparent heterosis (PMPH) in a broad range of CIMMYT maize germplasm, (2) evaluate the usefulness of SSR markers for defining heterotic groups and patterns in subtropical germplasm, and (3) examine applications of SSR markers for broadening heterotic groups by systematic introgression of other germplasm. Published data of two diallels and one factorial evaluated for grain yield were re-analyzed to calculate the PMPH in population hybrids. Additionally, 20 pools and populations widely used in CIMMYT's breeding program were assayed with 83 SSR markers covering the entire maize genome. Correlations of squared modified Roger's distance (MRD2) and PMPH were mostly positive and significant, but adaption problems caused deviations in some cases. For intermediate- and early-maturity subtropical germplasm, two heterotic groups could be suggested consisting of a flint and dent composite. We concluded that the relationships between the populations obtained by SSR analyses are in excellent agreement with pedigree information. SSR markers are a valuable complementation to field trials for identifying heterotic groups and can be used to introgress exotic germplasm systematically.Communicated by F. Salamini  相似文献   

15.

Key message

Genetic basis of grain yield heterosis relies on the cumulative effects of dominance, overdominance, and epistasis in maize hybrid Yuyu22.

Abstract

Heterosis, i.e., when F1 hybrid phenotypes are superior to those of the parents, continues to play a critical role in boosting global grain yield. Notwithstanding our limited insight into the genetic and molecular basis of heterosis, it has been exploited extensively using different breeding approaches. In this study, we investigated the genetic underpinnings of grain yield and its components using “immortalized F2” and recombinant inbred line populations derived from the elite hybrid Yuyu22. A high-density linkage map consisting of 3,184 bins was used to assess (1) the additive and additive-by-additive effects determined using recombinant inbred lines; (2) the dominance and dominance-by-dominance effects from a mid-parent heterosis dataset; and (3) the various genetic effects in the “immortalized F2” population. Compared with a low-density simple sequence repeat map, the bin map identified more quantitative trait loci, with higher LOD scores and better accuracy of detecting quantitative trait loci. The bin map showed that, among all traits, dominance was more important to heterosis than other genetic effects. The importance of overdominance/pseudo-overdominance was proportional to the amount of heterosis. In addition, epistasis contributed to heterosis as well. Phenotypic variances explained by the QTLs detected were close to the broad-sense heritabilities of the observed traits. Comparison of the analyzed results obtained for the “immortalized F2” population with those for the mid-parent heterosis dataset indicated identical genetic modes of action for mid-parent heterosis and grain yield performance of the hybrid.  相似文献   

16.
17.
Hybrid breeding relies on the combination of parents from two differing heterotic groups. However, the genetic diversity in adapted oilseed rape breeding material is rather limited. Therefore, the use of resynthesized Brassica napus as a distant gene pool was investigated. Hybrids were derived from crosses between 44 resynthesized lines with a diverse genetic background and two male sterile winter oilseed rape tester lines. The hybrids were evaluated together with their parents and check cultivars in 2 years and five locations in Germany. Yield, plant height, seed oil, and protein content were monitored, and genetic distances were estimated with molecular markers (127 polymorphic RFLP fragments). Resynthesized lines varied in yield between 40.9 dt/ha and 21.5 dt/ha, or between 85.1 and 44.6% of check cultivar yields. Relative to check cultivars, hybrids varied from 91.6 to 116.6% in yield and from 94.5 to 103.3% in seed oil content. Mid-parent heterosis varied from −3.5 to 47.2% for yield. The genetic distance of parental lines was not significantly correlated with heterosis or hybrid yield. Although resynthesized lines do not meet the elite rapeseed standards, they are a valuable source for hybrid breeding due to their large distance from present breeding material and their high heterosis when combined with European winter oilseed rape.  相似文献   

18.
Cheng SH  Zhuang JY  Fan YY  Du JH  Cao LY 《Annals of botany》2007,100(5):959-966
BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.  相似文献   

19.
In tropical maize breeding programs where more than two heterotic groups are crossed, factors such as population structure (PS) can influence the achievement of reliable estimates of genomic breeding values (GEBVs) for complex traits. Hence, our objectives were (i) to investigate PS in a set of tropical maize inbreds and their derived hybrids, and (ii) to control PS in genomic predictions of single-crosses considering two scenarios: applying (1) the traditional GBLUP (GB) and four adjustment methods of PS in the whole group, and (2) homogeneous- (A-GB), within- (W-GB), multi- (MG-GB), and across-group (AC-GB) analysis in stratified groups. Three subpopulations were identified in the inbred lines and hybrids based on fineSTRUCTURE results. Adding four different sets of PS as covariates to the prediction model did not improve the predictive ability (r). However, using non-metric multidimensional scaling and fineSTRUCTURE group clustering increased the reliability of GEBV estimation for grain yield and plant height, respectively. The W-GB analysis in the stratified groups resulted in low r, mostly due to the reduction of training size. On the other hand, A-GB and MG-GB showed similar r for both traits. However, MG-GB presented higher broad sense genomic heritabilities compared to A-GB, efficiently controlling heterogeneity of marker effects between subpopulations. The r of the AC-GB method was low when predicting groups genetically distant. We conclude that predicting hybrid phenotypes by using PS covariates and multi-group analysis in stratified clusters may be an efficient method, increasing reliability and predictive ability, respectively.  相似文献   

20.
Understanding the molecular mechanisms underlying complex phenotypes requires systematic analyses of complicated metabolic networks and contributes to improvements in the breeding efficiency of staple cereal crops and diagnostic accuracy for human diseases. Here, we selected rice (Oryza sativa) heterosis as a complex phenotype and investigated the mechanisms of both vegetative and reproductive traits using an untargeted metabolomics strategy. Heterosis-associated analytes were identified, and the overlapping analytes were shown to underlie the association patterns for six agronomic traits. The heterosis-associated analytes of four yield components and plant height collectively contributed to yield heterosis, and the degree of contribution differed among the five traits. We performed dysregulated network analyses of the high- and low-better parent heterosis hybrids and found multiple types of metabolic pathways involved in heterosis. The metabolite levels of the significantly enriched pathways (especially those from amino acid and carbohydrate metabolism) were predictive of yield heterosis (area under the curve = 0.907 with 10 features), and the predictability of these pathway biomarkers was validated with hybrids across environments and populations. Our findings elucidate the metabolomic landscape of rice heterosis and highlight the potential application of pathway biomarkers in achieving accurate predictions of complex phenotypes.

Specific metabolic pathways (especially those from amino acid and carbohydrate metabolism) underlie heterosis of six agronomic traits in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号