首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) is a critical ecological and environmental indicator under changing environments. The impact of winter climate change on N biogeochemical processes in forest ecosystems has gained increasing recognition. Decreasing snowfall has caused a decrease in the heat insulation properties of the snowpack, resulting in an increase in the frequency and magnitude of freezing and thawing cycles in surface soil, where biological processes are most active. Here I synthesize recent research findings from integrated field observations and experiments conducted in northern Japan and compare these results with previous research outcomes from other regions to identify current research gaps and develop the next research agenda to further advance our understanding of this complex problem. Japanese case studies indicated that net ammonium production (ammonification) was mostly dominant in terms of available soil N fertility in cold environments and was sensitive to the increase in soil freezing and thawing cycles because of the decreased snowpack. On the other hands, nitrate dynamics were more stable or conservative than those of ammonium. The soil characteristics (i.e., N pool and microbial activities) were significant explanatory factors of the responses of soil N dynamics and N leakage among different soils to increased freezing–thawing cycles at watershed and national scale. This synthesis indicates that winter climate change had significant impacts on soil N biogeochemistry (such as soil N pool size and microbial N transformation) during the winter and snowmelt season and also during the following growing season. Several research gaps and possible research topics (path dependency and soil microbial community composition) are also presented by synthesizing the current research findings. Further field experiments and observations quantifying the pools and fluxes of inorganic N with modeling analysis under freeze–thaw environments would contribute to increase the understandings of N transformation processes under winter climate change.  相似文献   

2.
Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N‐related processes might respond differently to winter climate change in northern hardwood forests than C‐related processes.  相似文献   

3.
为了解气候变暖情景下雪况变化对高寒森林冬季土壤氮转化的影响,测定了川西亚高山冷杉(Abies faxoniana)+红桦(Betula albo-sinensis)混交林(MF)和冷杉次生林(SF)三类雪被斑块(浅雪被、中厚度雪被和厚雪被)内冬季土壤氮矿化特征。结果表明:经过一个冬季(2011-2012),两个森林群落土壤净氮氨化量都为负值,净氮硝化量都为正值,且净氮硝化量显著高于净氮氨化量;冬季土壤氮氨化、硝化、矿化和固持量都是中度雪被厚度最高,但各雪被斑块之间都未达到显著水平。各雪被斑块下,冷杉次生林土壤氮矿化参数都显著高于针阔混交林,但雪被斑块和林型交互作用对冬季土壤氮矿化无显著影响。这表明,该区冬季土壤氮矿化以硝化过程为主,硝化和氨化过程可能受不同微生物群落调控;短时期内,未来气候变化所导致的雪被减少对该区森林冬季土壤氮转化影响可能不明显。  相似文献   

4.
Aims Boreal forest is the largest and contains the most soil carbon among global terrestrial biomes. Soil respiration during the prolonged winter period may play an important role in the carbon cycles in boreal forests. This study aims to explore the characteristics of winter soil respiration in the boreal forest and to show how it is regulated by environmental factors, such as soil temperature, soil moisture and snowpack.Methods Soil respiration in an old-growth larch forest (Larix gmelinii Ruppr.) in Northeast China was intensively measured during the winter soil-freezing process in 2011 using an automated soil CO2 flux system. The effects of soil temperature, soil moisture and thin snowpack on soil respiration and its temperature sensitivity were investigated.Important findings Total soil respiration and heterotrophic respiration both showed a declining trend during the observation period, and no significant difference was found between soil respiration and heterotrophic respiration until the snowpack exceeded 20cm. Soil respiration was exponentially correlated with soil temperature and its temperature sensitivity (Q 10 value) for the entire measurement duration was 10.5. Snow depth and soil moisture both showed positive effects on the temperature sensitivity of soil respiration. Based on the change in the Q 10 value, we proposed a 'freeze–thaw critical point' hypothesis, which states that the Q 10 value above freeze–thaw critical point is much higher than that below it (16.0 vs. 3.5), and this was probably regulated by the abrupt change in soil water availability during the soil-freezing process. Our findings suggest interactive effects of multiple environmental factors on winter soil respiration and recommend adopting the freeze–thaw critical point to model soil respiration in a changing winter climate.  相似文献   

5.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

6.
Climate change models predict that the snowpacks of temperate forests will develop later and be shallower resulting in a higher propensity for soil freezing. In the northern most island of Japan, Hokkaido, snowpack depth decreases from west to east. This snowpack depth gradient provided a unique opportunity to test the effects of variable snowpack and soil freezing on N biogeochemistry. The Shibecha Northern Catchment in Shibecha Experimental Forest, eastern Hokkaido had deciduous trees and a mean annual snowpack of 0.7 m while the M3 catchment in Uryu Experimental Forest, western Hokkaido had mixed deciduous and coniferous tree species and a mean annual snowpack of 2.0 m. We conducted a field study (October 2004–April 2005) to determine if differences in Shibecha and Uryu soil extractable N, N mineralization, and nitrification were controlled by the variability in soil freezing during winter or tree species composition that affected the quality of the forest floor. The mixed deciduous and coniferous trees forming the Uryu forest floor had a higher C:N ratio (25.0 vs. 22.4 at Shibecha), higher lignin:N ratio (15 vs. 8.8), and higher lignin concentrations (0.28 vs. 0.18 g lignin g−1). These differences in forest floor quality contributed to higher net N mineralization and nitrification in Shibecha compared to Uryu. In Shibecha, soil remained frozen for the entire study. For Uryu, except for an early period with cold temperatures and no snow, the soil generally remained unfrozen. As a result of the early winter cold period and soil freezing, extractable soil NH4+ did not change but NO3 increased. Reciprocal 0–5 cm mineral soil transplants made between Shibecha and Uryu and incubated during winter at 0, 5, and 30 cm suggested that soil freezing resulted in greater net N mineralization yet lower nitrification regardless of the soil origin. The effect of soil freezing should be considered when evaluating differences in N dynamics between temperate ecosystems having a propensity for soil freezing.  相似文献   

7.
Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on the mobilization of dissolved organic carbon (DOC) and nitrate (NO3 ?) in soils over the course of 2 years. During a winter with a relatively thin snowpack, soils at lower elevation sites experienced greater freezing and especially variable freeze/thaw cycles, which in turn led to greater leaching of DOC from the organic horizon during the following growing season. In contrast to several previous field manipulation studies, we did not find changes in soil solution NO3 ? concentrations related to soil freezing variables. Our results are consistent with a soil matrix disturbance from freezing and thawing which increases leachable C. These results build upon previous laboratory experiments and field manipulations that found differing responses of DOC and NO3 ? following soil freezing, suggesting that mobilization of labile C may suppress NO3 ? losses through microbial immobilization of N. This research highlights the importance of studying natural variation in winter climate and soil freezing and how they impact soil C and N retention, with implications for surface water runoff quality.  相似文献   

8.
M. Thum 《Oecologia》1986,68(4):601-605
Summary Labelled nitrogen was used to evaluate the effects of intensive forest management on soil nitrogen transformations. The total release of N into inorganic forms (ammonium plus nitrate) was much greater than net N mineralization in all treatments. Immobilization of N by microbes was greatest in minimally-treated harvested plots, while the turnover of N within soil microbes was greatest in intensively-treated plots. Ammonium was immobilized 2.4–3.2 times more rapidly than nitrate in havested plots; nitrification in disturbed sites could thus increase the availability of N to regrowing vegetation.  相似文献   

9.
Nitrogen mineralization, a main way that soil organic nitrogen converts to mineral nitrogen, is one of the key processes in soil nitrogen cycle. The mineral nitrogen has an important role in plant growth in the growing season. It has been widely accepted that soil freezing in winter can kill a number of microorganisms, weakening soil nitrogen mineralization. However, more and more recent studies have documented that soil microorganisms still have high activity during the deep freezing period, and obvious nitrogen mineralization in winter. Seasonal freeze–thaw cycle is a common phenomenon in the subalpine/alpine forest region, which may have a strong effect on soil ecological processes. Furthermore, the changing pattern of seasonal freeze–thaw cycles might have a significant influence on soil nitrogen mineralization in this region in the scenarios of global warming. As yet, little attention has been given to nitrogen mineralization of soil organic layer as affected by changed seasonal freeze–thaw pattern, although the increasing studies have demonstrated that winter warming might give strong effects on the litter decomposition and microbial activity in the subalpine/alpine forest regions. Therefore, a method of intact soil core incubation in combination with natural environmental gradient was employed by transferring forest soils from 3582 m (A1) of altitude to 3298 m (A2) of altitude and 3023 m (A3) of altitude in the subalpine/alpine forests of western Sichuan, respectively. The amounts and rates of net nitrogen mineralization in soil organic layer were measured. The incubation period included the growing season and the freeze–thaw season from May 24, 2010 to April 19, 2011. The results suggested that significant net nitrogen mineralization was only observed in soil organic layer at low altitude (A3) during the whole incubation period. Forest soils at higher altitudes (A1 and A2) showed obvious soil nitrogen immobilization. In comparison with the growing season which showed remarkable nitrogen immobilization characteristic, the freeze–thaw season showed obvious nitrogen mineralization at lower altitudes (A2 and A3). In contrast, the nitrogen immobilization amounts at high altitude (A1) in freeze–thaw period were less than those in the growing season. Besides, the maximum of net nitrogen mineralization amounts and rates at high altitude (A1) in soil organic layer mainly occurred in the late stage of growing season and the onset of freezing, soil nitrogen mineralization at the middle altitude (A2) mainly occurred in the onset of freezing and the deep freezing period, while the highest amount and rate of net nitrogen mineralization at low altitude (A3) occurred in the early stage of thawing and the late stage of growing season. Furthermore, the amount and rate of soil net nitrogen mineralization during the freeze–thaw season were increasing with the decrease of altitude, which correlated with soil freeze–thaw cycle and freezing process at different altitudes. These results indicated that increasing soil temperature in the future could not only significantly enhance soil nitrogen mineralization in the freeze–thaw season, but also improve soil nitrogen mineralization by increasing freeze–thaw cycle times and shortening freeze–thaw period. However, the processes were significantly influenced by soil micro-environment of subalpine/alpine forest regions.  相似文献   

10.
Northern forest ecosystems are projected to experience warmer growing seasons and increased soil freeze–thaw cycles in winter over the next century. Past studies show that warmer soils in the growing season enhance nitrogen uptake by plants, while soil freezing in winter reduces plant uptake and ecosystem retention of nitrogen, yet the combined effects of these changes on plant root capacity to take up nitrogen are unknown. We conducted a 2-year (2014–2015) experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to characterize the response of root damage, nitrogen uptake capacity, and soil solution nitrogen to growing season warming combined with soil freeze–thaw cycles in winter. Winter freeze–thaw cycles damaged roots, reduced nitrogen uptake capacity by 42%, and increased soil solution ammonium in the early growing season (May–June). During the peak growing season (July), root nitrogen uptake capacity was reduced 40% by warming alone and 49% by warming combined with freeze–thaw cycles. These results indicate the projected combination of colder soils in winter and warmer soils in the snow-free season will alter root function by reducing root nitrogen uptake capacity and lead to transient increases of nitrogen in soil solution during the early growing season, with the potential to alter root competition for soil nitrogen and seasonal patterns of soil nitrogen availability. We conclude that considering interactive effects of changes in climate during winter and the snow-free season is essential for accurate determination of the response of nitrogen cycling in the northern hardwood forest to climate change.  相似文献   

11.
Air temperature freeze–thaw cycles often occur during the early spring period directly after snowmelt and before budbreak in low arctic tundra. This early spring period may be associated with nitrogen (N) and carbon (C) loss from soils as leachate or as trace gases, due to the detrimental impact of soil freeze–thaw cycles and a developing active layer on soil microorganisms. We measured soil and microbial pools of C and N in early spring during a period of fluctuating air temperature (ranging from ?4 to +10°C) and in midsummer, in low arctic birch hummock tundra. In addition we measured N2O, CH4 and CO2 production in the early spring. All of these biogeochemical variables were also measured in long-term snowfence (deepened snow) and N-addition plots to characterize climate-change related controls on these variables. Microbial and soil solution pools of C and N, and trace gas production varied among the five early spring sample dates, but only marginally and no more than among sample dates in midsummer. N-addition greatly elevated N2O fluxes, indicating that although denitrifiers were present their activity during early spring was strongly limited by N-availability, but otherwise trace gas production was very low in early spring. The later thaw, warmer winter and colder spring soil temperatures resulting from deepened snow did not significantly alter N pools or rates in early spring. Together, our results indicate strong stability in microbial and soil solution C and N pool sizes in the early spring period just after snowmelt when soil temperatures are close to 0°C (?1.5 to +5°C). A review of annual temperature records from this and other sites suggests that soil freeze–thaw cycles are probably infrequent in mesic tundra in early spring. We suggest that future studies concerned with temperature controls on soil and microbial biogeochemistry should focus not on soil freeze–thaw cycles per se, but on the rapid and often stepped increases in soil temperature that occur under the thawing snowpack.  相似文献   

12.
Atmospheric nitrogen (N) deposition increasingly impacts remote ecosystems. At high altitudes, snow is a key carrier of water and nutrients from the atmosphere to the soil. Medium-sized subalpine grassland terraces are characteristic of agricultural landscapes in the French Alps and influence spatial and temporal snow pack variables. At the Lautaret Pass, we investigated snow and soil characteristics along mesotopographic gradients across the terraces before and during snowmelt. Total N concentrations in the snowpack did not vary spatially and were dominated by organic N forms either brought by dry deposition trapped by the snow, or due to snow-microbial immobilization and turnover. As expected, snowpack depth, total N deposited with snow and snowmelt followed the terrace toposequence; more snow-N accumulated towards the bank over longer periods. However, direct effects of snow-N on soil-N cycling seem unlikely since the amount of nitrogen released into the soil from the snowpack was very small relative to soil-N pools and N mineralization rates. Nevertheless, some snow-N reached the soil at thaw where it underwent biotic and abiotic processes. In situ soil-N mineralization rates did not vary along the terrace toposequence but soil-N cycling was indirectly affected by the snowpack. Indeed, N mineralization responded to the snowmelt dynamic via induced temporal changes in soil characteristics (i.e. moisture and T°) which cascaded down to affect N-related microbial activities and soil pH. Soil-NH4 and DON accumulated towards the bank during snowmelt while soil-NO3 followed a pulse-release pattern. At the end of the snowmelt season, organic substrate limitation might be accountable for the decrease in N mineralization in general, and in NH4 + production in particular. Possibly, during snowmelt, other biotic or abiotic processes (nitrification, denitrification, plant uptake, leaching) were involved in the transformation and transfer of snow and soil-N pools. Finally, subalpine soils at the Lautaret Pass during snowmelt experienced strong biotic and abiotic changes and switched between a source and a sink of N.  相似文献   

13.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

14.
土壤氮矿化作为氮转化的主要过程决定土壤供氮能力。热带森林生态系统往往受磷限制, 氮矿化过程对干旱的响应是否受磷限制的调控值得探讨。该研究以海南三亚甘什岭自然保护区热带低地雨林为研究对象, 利用2019年建立的林内穿透雨减少(50%)及磷添加双因素交互实验平台, 通过野外树脂芯原位培养法研究模拟干旱及磷添加对土壤无机氮(包括铵态氮和硝态氮)含量和氮矿化过程的影响。结果表明: 1)减雨处理显著降低了5和15 cm深度土壤的水分含量, 而对土壤温度没有显著影响。2)减雨处理和减雨与磷添加共同处理无论在旱季还是湿季对0-10 cm土壤无机氮含量均没有产生显著影响, 但磷添加处理在旱季显著降低了土壤硝态氮含量, 表明磷添加处理对氮有效性的影响主要体现在旱季, 而非湿季。3)干旱处理在旱季和湿季均显著降低了土壤净氨化速率和净氮矿化速率, 而磷添加处理和减雨与磷添加共同处理无论在旱季还是湿季对净氨化速率、净硝化速率和净氮矿化速率均没有产生显著影响, 结果表明了干旱能够显著降低土壤净氮矿化速率。4)土壤水分含量与土壤净氨化速率和净氮矿化速率呈显著正相关关系, 同时减雨处理显著影响了土壤净氨化速率与铵态氮含量的关系, 并且在铵态氮含量相等的情况, 随着干旱的影响净氨化速率下降得更快。这表明土壤水分含量变化是影响该研究样地土壤氮矿化的主要因素。上述研究结果说明, 降水变化对热带低地雨林中土壤氮矿化有重要影响, 短期磷添加没有显著影响, 减雨与磷添加对土壤氮矿化过程并没有交互效应。  相似文献   

15.
秸秆在土壤内分解初期氮素矿化与固持的模拟测定   总被引:9,自引:2,他引:7  
利用模拟软件Modelmaker对3种作物秸秆在土壤内分解初期氮素循环转化过程进行了模拟,取得了土壤铵态氮、硝态氮、微生物氮及其15N丰度等个变量模拟值和测定值的良好一致性.模型模拟对氮转化速率测定的结果表明,土壤微生物主要固持铵态氮,对硝态氮固持非常微弱.氮矿化主要发生于作物秸秆,腐殖质氮的矿化极其微弱.一级动力学方程对秸秆氮素矿化过程的描述优于零级动力学方程.微生物固持氮的再矿化过程落后于氮固持过程,假定再矿化不发生或认为再矿化与固持化同时进行可导致氮矿化与固持速率测定的严重误差.忽略氮硝化过程和挥发损失将导致氮矿化和固持速率的测定值偏低.净固持或净矿化的产生不仅与秸秆碳氮比有关,而且与秸秆在土壤内分解时间有关.  相似文献   

16.
While climate warming can increase plant N availability over the growing season by increasing rates of N mineralization, increased N mineralization over winter at a time when plant roots are largely inactive, coupled with an increased frequency of soil freeze–thaw cycles, may increase soil N leaching losses. We examined changes in soil net N mineralization and N leaching in response to warming and N addition (6 g m?2 year?1) in a factorial experiment conducted in a temperate old field. We used two warming treatments, year-round and winter-only warming, to isolate the effects of winter warming on soil N dynamics from the year-round warming effects. We estimated net N mineralization using in situ soil cores with resin bags placed at the bottom to catch throughput, and we measured N leaching using lysimeters located below the plant rooting zone at a depth of 50 cm. There were minor effects of warming on changes in soil extractable N and resin N in the soil cores over winter. Nevertheless, the overall effects of both warming and N addition on net N mineralization (the sum of changes in soil extractable N and resin N) were not significant over this period. Likewise, there were no significant treatment effects on the concentration of N in leachate collected below the plant rooting zone. However, in response to winter warming, net N mineralization over summer was approximately double that of both the ambient and year-round warming treatments. This result demonstrates a potentially large and unexpected effect of winter warming on soil N availability in this old field system.  相似文献   

17.
Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.  相似文献   

18.
气候变化引发的季节性雪被改变可能对高寒森林土壤氮循环产生深刻影响.以遮雪棚去除雪被,研究了雪被去除样方和对照样方在不同关键时期(雪被初期、深雪被期和雪被融化期)土壤氮库和矿化速率的变化.结果表明: 季节性雪被对土壤具有良好的保温作用,雪被去除使得5 cm深度土壤平均温度和最低温度分别降低0.33和1.17 ℃,并明显增加了土壤冻结深度和冻融循环.土壤活性氮在不同雪被时期存在显著差异.雪被去除使得冬季土壤铵态氮、硝态氮和可溶性有机氮增加38.6%、23.5%和57.3%.此外,雪被去除也促进了融化期土壤硝化和矿化速率的增加.因此,未来气候变暖引起的雪被减少可能加快川西亚高山森林冬季土壤氮循环.  相似文献   

19.
Unstable snow cover and more frequent freeze–thaw events have been predicted for montane areas in southern Norway, where stable winters are common today. These systems are important contributors to the flux of carbon (C) and nitrogen (N) to air and water. Here we quantify and compare the effects of freeze–thaw on C and N release from soils collected below Calluna, Molinia or Sphagnum. Intact organic soil cores were subjected to four different freeze–thaw regimes for four consecutive 2‐week periods: (1) slow cycling (SC) with one long freezing event during each 2‐week period, (2) fast cycling (FC) with four short freezing events during each 2‐week period, (3) permanent frost (PF) and (4) permanent thaw (PT). The freezing temperature was −5 °C and the thawing temperature was 5 °C. Before start of treatment, at the end of each 2‐week period, and during postincubation periods, carbon dioxide (CO2) emission as well as leachable dissolved organic C (DOC), dissolved organic N (DON), ammonium (NH4), nitrate (NO3) and absorbance at 254 nm were measured. In soils from all three vegetations, PF increased the release of CO2, DOC, DON and NH4 compared with PT. SC caused some scattered effects whereas FC only resulted in some increase in NO3 release below Molinia. Generally, the emission of CO2 and leaching of DOC, DON and NH4 increased in the following order: Sphagnum < Calluna < Molinia. The release of NO3 was greatest below Calluna. Our data suggest that vegetation cover and composition seem at least as important as increased soil frost for future winter fluxes of CO2, DOC, DON and dissolved inorganic N (DIN) from the soil to air and water. The freezing period needs to be sufficiently long to give significant effects.  相似文献   

20.
We examined microclimatic conditions and soil nitrogen (N) dynamics of different alpine plant community types on the Bogong High Plains in Victoria, Australia. Three community types are predominant in the High Plains region, namely grassland, heathland and woodland and together they form so‐called inverted treelines, with grassland in valley floors below the treeline. Outdoor temperature loggers were deployed in the three vegetation types to establish differences among microclimatic conditions. We incubated soils to determine rates of N production and collected additional soil samples for analysis of soil properties and soluble N. Temperature data showed that only grassland communities experienced sub‐zero temperatures in winter. Temperature and soil moisture influenced indices of N mineralization and N nitrification in this alpine ecosystem. Rates of N mineralization were significantly faster than nitrification that only produced consequential amounts of nitrate in summer. This information, together with considerably lower pools of nitrate than ammonium and organic N in the soil, implies that ammonium is the dominant form of soluble N in the ecosystem whereas nitrate most likely only has minor importance for plant nutrition. The results of this study provide insight into ecological processes of this alpine ecosystem and demonstrate the vulnerability of the system to altered climatic and edaphic conditions in the course of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号