首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

2.

Background and aims

Climate warming, nitrogen (N) deposition and land use change are some of the drivers affecting ecosystem processes such as soil carbon (C) and N dynamics, yet the interactive effects of those drivers on ecosystem processes are poorly understood. This study aimed to understand mechanisms of interactive effects of temperature, form of N deposition and land use type on soil C and N mineralization.

Methods

We studied, in a laboratory incubation experiment, the effects of temperature (15 vs. 25 °C) and species of N deposition (NH4 +-N vs. NO3 ?-N) on soil CO2 efflux, dissolved organic C (DOC) and N (DON), NH4 +-N, and NO3 ?-N concentrations using intact soil columns collected from adjacent forest and grassland ecosystems in north-central Alberta.

Results

Temperature and land use type interacted to affect soil CO2 efflux, concentrations of DON, NH4 +-N and NO3 ?-N in most measurement times, with the higher incubation temperature resulted in the higher CO2 efflux and NH4 +-N concentrations in forest soils and higher DON and NO3 ?-N concentrations in grassland soils. Temperature and land use type affected the cumulative soil CO2 efflux, and DOC, DON, NH4 +-N and NO3 ?-N concentrations. The form of N added or its interaction with the other two factors did not affect any of the C and N cycling parameters.

Conclusions

Temperature and land use type were dominant factors affecting soil C loss, with the soil C in grassland soils more stable and resistant to temperature changes. The lack of short-term effects of the deposition of different N species on soil C and N mineralization suggest that maybe there was a threshold for the N effect to kick in and long-term experiments should be conducted to further elucidate the species of N deposition effects on soil C and N cycling in the studied systems.  相似文献   

3.
Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on the mobilization of dissolved organic carbon (DOC) and nitrate (NO3 ?) in soils over the course of 2 years. During a winter with a relatively thin snowpack, soils at lower elevation sites experienced greater freezing and especially variable freeze/thaw cycles, which in turn led to greater leaching of DOC from the organic horizon during the following growing season. In contrast to several previous field manipulation studies, we did not find changes in soil solution NO3 ? concentrations related to soil freezing variables. Our results are consistent with a soil matrix disturbance from freezing and thawing which increases leachable C. These results build upon previous laboratory experiments and field manipulations that found differing responses of DOC and NO3 ? following soil freezing, suggesting that mobilization of labile C may suppress NO3 ? losses through microbial immobilization of N. This research highlights the importance of studying natural variation in winter climate and soil freezing and how they impact soil C and N retention, with implications for surface water runoff quality.  相似文献   

4.
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape‐scale controls on potential production of these compounds using a one‐year laboratory incubation at two temperatures (10° and 30 °C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80–370 mg CO2‐C g soil C?1 and 5–46 mg DOC g soil C?1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.  相似文献   

5.
Shand  C.A.  Williams  B.L.  Smith  S.  Young  M.E. 《Plant and Soil》2000,222(1-2):1-13
We have determined the temporal changes in the concentration of dissolved organic carbon (DOC) and P and N components in soil solution following application of synthetic sheep urine (500 kg N ha-1) to a brown forest soil in boxes sown with Agrostis capillaris. Three contrasting defoliation treatments (no cutting, single cut before urine application and regular cutting twice per week) plus a fallow soil were studied. The synthetic urine contained 15N labelled urea and was P-free. Intact soil cores were taken after 2, 7, 14, 21 and 56 d and centrifuged to obtain soil solution. The urea in the synthetic urine was rapidly hydrolysed in the soil, increasing soil solution pH, DOC and total dissolved phosphorus (TDP) concentrations. For the regularly defoliated sward, DOC and P reached maximum concentrations (4000 mg DOC L-1 and 59 mg TDP L-1) on day 7. From their peak values, pH and DOC and P concentrations generally decreased with time and at day 56 were near those of the control. Concentrations of NH4 + and NO3 - in the no-urine treatments fluctuated and the greatest treatment differences were between the fallow soil and the soil sown with grass. Adding synthetic urine increased NH4 + concentrations during the first week, but NO3 - concentrations decreased. This was consistent with the 15N labelling of the NO3 - pool which required 3 weeks to reach that of 15NH4 +. Dissolved organic nitrogen (DON) reached a maximum value at day 7 with a concentration of 409 mg N L-1. The DON in soil solution contained no detectable amounts of 15N label indicating that it was derived from sources in the soil. Differences in soil solution composition related to the effect of the other cutting treatments and the fallow treatment were small compared to the effect of synthetic urine addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Regular bi-weekly additions of NH4NO3, equivalent to a rate of 3 g N m–2 yr–1, were applied to cores of Sphagnum capillifolium, inhabiting hummocks and S. recurvum a pool and hollow colonizer, in a raisedbog in north east Scotland. Microbial biomass C and N,both measured by chloroform extraction, showed similarseasonal patterns and, for most depths, the effects ofadded N on microbial biomass C and N changed withtime. The addition of inorganic N had greatest effectduring October when the water table had risen to thesurface and microbial C and N in the untreated coreshad decreased. Microbial C and N were maintained at75 g C m–2 and 8.3 g N m–2 above the values in the untreated cores and far exceeded the amounts of N that had been added up to that date (1 g N m–2) as NH4NO3. This increased microbial biomass was interpreted as leaching of carbonaceous material from the NH4NO3 treated moss resulting in greater resistance of the microbialbiomass to changes induced by the rising water table.Treatment with N also caused significant reductions inextractable dissolved organic N (DON) at 10–15 cmdepth, beneath the surface of the moss, but at lowerdepths to 25 cm no changes were observed. Extracteddissolved organic carbon (DOC) was not affected by Ntreatment and showed less seasonal variation than DON,such that the C:N ratio of dissolved organic matter(DOM) in all depths increased from approximately 4 inJuly to around 30 in December.  相似文献   

7.
Seasonal variation of dissolved organic C (DOC) and its effects on microbial activity and N dynamics were studied during two consecutive years in soils with different organic C concentrations (hilltop and hillslope) in a tropical deciduous forest of Mexico. We found that DOC concentrations were higher at the hilltop than at the hillslope soils, and in both soils generally decreased from the dry to the rainy season during the two study years. Microbial biomass and potential C mineralization rates, as well as dissolved organic N (DON) and NH4+ concentrations and net N immobilization were higher in soils with higher DOC than in soils with lower DOC. In contrast, net N immobilization and NH4+ concentration were depleted in the soil with lowest DOC, whereas NO3 concentrations and net nitrification increased. Negative correlations between net nitrification and DOC concentration suggested that NH4+ was transformed to NO3 by nitrifiers when the C availability was depleted. Taken together, our results suggest that available C appears to control soil microbial activity and N dynamics, and that microbial N immobilization is facilitated by active heterotrophic microorganisms stimulated by high C availability. Soil autotrophic nitrification is magnified by decreases in C availability for heterotrophic microbial activity. This study provides an experimental data set that supports the conceptual model to show and highlight that microbial dynamics and N transformations could be functionally coupled with DOC availability in the tropical deciduous forest soils. Responsible Editor: Chris Neill  相似文献   

8.
Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH4 + and NO2 were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO3 was depleted, although not exhausted. High DOC and DON values in conjunction with high NH4 + levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH4 + and NO2 points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  相似文献   

9.
Two strains of Dunaliella salina (Dunal) Teod., UTEX 1644 and UTEX 200, were cultured under different growth regimes, including 10 mM NO3? or NH4+, 1.5 or 3.0 M NaCl, and low (0.035%) or high (5%) CO2 in air. The release of 14C-labeled dissolved organic carbon (DOC), expressed as a rate and as a percentage of photosynthetic 14CO2 assimilation, was subsequently determined. The percentage of DOC released was inversely related to cell density in the assay medium, but photosynthesis on a per-cell basis was not. Release of DOC was low, in the range of 1–5% of photosynthesis, but during acclimation to growth on NH4+, it rose to 11%. The presence of NH4+ rather than NO3? in the growth medium increased the rate of release by both strains, but the percentage release was stimulated only in UTEX 200 cells, because their photosynthetic rate was depressed by NH4+. For UTEX 1644, high, as compared to low, CO2-grown cells, had somewhat higher rates and percentages of DOC release, but release from UTEX 200 cells was unaffected by the growth-CO2. The rate of DOC release by high CO2-grown cells was not enhanced at a low concentration of dissolved inorganic carbon, indicating that the released material did not originate from the photorespiratory pathway. The effects of NaCl on DOC release varied with strain and growth conditions. For UTEX 200, the cells in NO3?, but not NH4+, exhibited a doubling or more in percentage of release with a doubling in NaCl concentration, irrespective of growth-CO2. With UTEX 1644 the low CO2-grown cells showed the greatest enhancement in 3.0 M NaCl. Organic matter accumulated on the external surface of the cell membrane and constituted a well-defined cell-coat, which was more dense in NH4+ than in NO3?-grown cells. Microtubules, which may play a role in maintaining cell shape, were observed just below the plasma membrane. From a practical viewpoint, the presence of organic material in the hypersaline ponds of salt-works is detrimental to salt production. When D. salina cells become abundant in such ponds, the attendant, continuous release of DOC may make a significant contribution to the problem.  相似文献   

10.
Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2-fixing (diazotrophic) and CH4-oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4-N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant-available NH4-N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.  相似文献   

11.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

12.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

13.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

14.
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 ) and phosphate (PO4 3−) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l−1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 and PO4 3− stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.  相似文献   

15.
海水中藻菌共培养体系对碳氮磷的吸收转化   总被引:1,自引:0,他引:1  
张艳敏  王江涛  谭丽菊 《生态学报》2017,37(14):4843-4851
海洋环境中,细菌和微藻之间的物质交换是生源要素在自然界中迁移转化的重要方式。为进一步了解生源要素的生物地球化学循环,在实验室模拟条件下,研究了共培养体系中营养盐和有机物在细菌和微藻之间的转换。通过纯培养中肋骨条藻(Skeletonema costatum)、东海原甲藻(Prorocentrum donghaiense)、天然海水中的细菌以及藻菌混合培养,分析了营养盐和有机物随藻菌生物量的变化情况,并计算了溶解有机碳(DOC)和溶解有机氮(DON)的浓度比值[(DOC/DON)a]。结果发现,在共培养体系中,细菌对中肋骨条藻的生长有抑制作用,对东海原甲藻影响不明显;中肋骨条藻有利于细菌生长,东海原甲藻抑制细菌生长,这种不同可能与微藻的粒径有关。海洋细菌在2种藻的指数生长均期均会促进微藻吸收氨氮(NH_4-N),但在生长末期NH_4-N以释放为主。硝氮(NO_3-N)的浓度与藻的生长呈负相关,但在衰亡期NO_3-N略有增加,表明NO_3-N再生所需时间较长。细菌对硝氮的吸收量较少,但对其再生有贡献。细菌和中肋骨条藻对磷酸盐(PO_4-P)的吸收存在竞争,但与东海原甲藻的竞争关系不明显。不同培养体系中DOC浓度变化不同,在藻菌共培养体系中增加较快,纯藻培养体系中增加缓慢,在纯菌培养体系中缓慢减少。通过对DOC与DON浓度比值的分析,发现用判断颗粒有机碳(POC)来源的方法可以分析DOC的来源。  相似文献   

16.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

17.
Piirainen  Sirpa  Finér  Leena  Mannerkoski  Hannu  Starr  Michael 《Plant and Soil》2002,239(2):301-311
Effects of clear-cutting on the dissolved fluxes of organic C (DOC), organic N (DON), NO3 and NH4 + through surface soil horizons were studied in a Norway spruce dominated mixed boreal forest in eastern Finland. Bulk deposition, total throughfall and soil water from below the organic (including understorey vegetation and, after clear-cutting, also logging residues), eluvial and illuvial horizons were sampled weekly from 1993 to 1999. Clear-cutting was carried out in September 1996. The removal of the tree canopy decreased the deposition of DOC and DON to the forest floor and increased that of NH4 + and NO3 but did not affect the deposition of total N (DTN, <3 kg ha–1 a–1). The leaching of DOC and DON from the organic horizon increased over twofold after clear-cutting (fluxes were on an average 168 kg C and 3.3 kg N ha–1 a–1), but the increased outputs were effectively retained in the surface mineral soil horizons. Inorganic N deposition was mainly retained by the logging residues and organic horizon indicating microbial immobilization. Increased NO3 formation reflected as elevated concentrations in the percolate from below the mineral soil horizons were observed especially in the third year after clear-cutting. However, the changes were small and the increased leaching of DTN from below the illuvial horizon remained small (<0.4 kg ha–1 a–1) and mainly DON. Effects of clear-cutting on the transport of C and N to surface waters will probably be negligible.  相似文献   

18.
Data from 13 catchments with no arable land in Northern Scotland were used to develop empirical linear regression models of average monthly NO3 ? concentrations and average summer and winter concentrations for NH4 +, dissolved organic N (DON) and dissolved organic carbon (DOC) as a function of catchment characteristics. All catchments displayed a pronounced seasonal NO3 ? cycle. Variation in monthly mean NO3 ? concentration within and between catchments could be predicted from mean monthly air temperature using separate regression equations for temperatures < and ≥ 5 °C. Soil type, climate and land use influenced NH4 + concentrations. In summer, concentrations of NH4 + were largest in catchments with extensive areas of brown forest soils, which are less acidic and more base-rich than other upland soils. However, concentrations declined with increasing conifer cover and summer rainfall. In winter, however, % conifer cover had a positive effect, while higher temperature and higher humus iron podzol cover had negative influences. DON concentration decreased with increasing catchment elevation in both summer and winter. Surprisingly, concentrations of DON only displayed a positive relationship with percentage peat cover in the summer. The most important factor controlling DOC concentration was soil type, with a positive relationship being observed between DOC and peat and humus iron podzol coverage. Elevation was also important, but only in the winter when concentrations were negatively correlated with maximum catchment elevation. Overall, multivariate regression equations explained the spatial and seasonal variability in N species concentrations over a range of catchments within Northern Scotland.  相似文献   

19.
The responses of mitogen-activated protein kinase (MAPK) family members, including ERK (extracellular signal-regulated kinase), JNK (c-Jun NH2-terminal kinase), and p38, in the metabolic responses to whole animal freezing (up to 24 h frozen at –2.5°C) and thawing (up to 4 h at 5°C after a 12 h freeze) were examined in four organs (liver, kidney, heart, brain) of the freeze-tolerant wood frog Rana sylvatica. Levels of the active phosphorylated form of p38 increased within 20 min as an early response to freezing in liver and kidney but rose later (after 12 h) in heart. Both JNK and p38 were activated during thawing in liver, kidney and heart with temporally-distinct patterns in each organ. The only MAPK response to freeze/thaw in frog brain was a transient elevation of p38 after 90 min thawing. ERK activity did not respond to freeze/thaw in any organ. The levels of c-Fos increased during freezing in kidney and brain whereas c-Jun was unaffected by freeze/thaw. Organ-specific responses by MAPKs, particularly p38, suggest that these may have roles in regulating metabolic or gene expression responses that may be adaptive in dealing with freezing stress or metabolic recovery during thawing.  相似文献   

20.
Nitrogen (N) deposition and land management practices can have profound impacts on the structure and functioning of alpine ecosystems occupying headwaters of major river systems. Such impacts have the potential to result in loss of N to surface waters and acidification, both of which could have serious consequences for water quality and downstream habitats. We present results from a 6-year study of Calluna-dominated alpine heathland in Scotland, designed to assess the interactive effects of N addition (0 and 50 kg N ha?1 y?l), simulated accidental fire and grazing on soil solution chemistry. Both N addition and to a lesser extent burning had significant effects on soil solution chemistry, whereas grazing had no significant impact. Soil solution nitrate (NO3 ?) and ammonium (NH4 +) concentration showed a rapid response to N addition and N addition also resulted in acidification of soil solution. A ‘flush’ of base cations, which normally buffer soil from the acid effects of deposited N, accompanied the excess N released from the soil to soil solution. The N treatment had no effect on dissolved organic carbon (DOC), however, concentrations were significantly (14%) lower at the burned plots. In addition to treatment effects, temporal analysis of data from control plots demonstrated that soil solution chemistry was influenced by extremes in weather conditions. Peak NO3 ? concentrations were observed in soil solution following the cold winter of 2000–2001 when there were frequent freeze/thaw events. A large pulse of base cations was lost from the soil following the dry year of 2003. These weather-induced responses potentially exacerbate the treatment effects observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号