首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
活性氧参与一氧化氮诱导的神经细胞凋亡   总被引:5,自引:0,他引:5       下载免费PDF全文
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体中活性氧水平的变化,发现神经细胞经0.5 mmol/L SNAP处理1 h后,细胞胞浆及线粒体中活性氧水平大大增加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一氧化氮引发神经损伤的内源性抗氧化剂.  相似文献   

2.
MFN1介导的线粒体融合在心肌细胞凋亡中的作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨线粒体融合关键蛋白MFN1介导的线粒体融合在调控心肌细胞凋亡中的作用。方法:通过si RNA降低体外培养H9C2心肌细胞中MFN1的表达后,采用Western blot检测线粒体细胞色素c(Cyto c)释放及其下游凋亡效应分子Caspase9与Caspase3活性,流式细胞术检测细胞内活性氧(ROS)的产生情况,流式细胞术检测细胞凋亡的情况。结果:干扰MFN1可显著促进H9C2心肌细胞内细胞色素c由线粒体释放至胞浆,促进Caspase9与Caspase3的激活,增加细胞内活性氧ROS产生并提高细胞凋亡率(均P0.05)。结论:MFN1介导的线粒体融合可保护心肌细胞凋亡,其机制可能与抑制ROS产生与细胞色素C释放有关。  相似文献   

3.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

4.
Peroxiredoxin V(Prx V)是过氧化物酶peroxiredoxins家族中的一员,在神经细胞中含量丰富,具有通过清除细胞内活性氧(reactive oxygen species,ROS)和过氧亚硝酸盐抑制氧化应激诱导的细胞凋亡的作用。过量的一氧化氮(nitric oxide,NO)具有较强的神经毒性,可引起小胶质细胞炎性反应,诱导神经细胞凋亡从而引发神经退行性疾病,而且可诱导神经小胶质细胞Prx V的表达,参与小胶质细胞的活性调控过程。但是,NO诱导的海马神经细胞凋亡过程中Prx V的作用尚不清楚。该研究利用硝普化钠(sodium nitroprusside dihydrate,SNP)作为NO供体,检测了NO诱导的HT22小鼠海马神经细胞的凋亡及对Prx V蛋白表达的影响。结果显示,SNP诱导的HT22细胞凋亡呈现时间、浓度依赖性;并特异性地抑制了Prx V的表达,致使细胞内ROS水平升高,激活线粒体依赖的经典凋亡途径,导致HT22细胞的凋亡。该研究结果揭示,NO通过抑制细胞内Prx V的表达导致细胞内ROS水平升高,最终诱导HT22细胞发生凋亡的机制,为保护NO诱导的神经细胞凋亡提供了新的理论依据。  相似文献   

5.
目的:研究药用植物丹参的根茎提取成分丹酚酸B对人胶质瘤U251细胞的放疗增敏作用,并探讨其可能的分子机制。方法:使用1μM浓度的丹酚酸B处理胶质瘤U251细胞,并用等量PBS建立对照组,使用射线照射建立放射治疗模型。MTT法检测细胞活力;流式细胞术检测细胞凋亡;荧光染色检测活性氧ROS含量及线粒体肿胀程度。结果:丹酚酸B能够显著降低射线照射后U251细胞活力,并增加其凋亡(P0.05)。丹酚酸B能够显著增加射线照射后U251细胞活性氧ROS的产生,并增加线粒体的肿胀程度(P0.05)。结论:丹酚酸B能够通过诱导内源性凋亡增加胶质瘤细胞的放疗敏感性,这种作用可能是通过抑制线粒体功能而实现的。  相似文献   

6.
BMF(Bcl-2-modifying factor)是一种具有促凋亡作用的Bcl-2家族成员.在正常生理状态下,内源性的BMF持续锚定在胞浆中的细胞骨架上,时刻感受细胞内的变化.一旦损伤刺激作用于细胞,BMF从胞浆转移至线粒体,触发线粒体凋亡途径,造成细胞损伤.BMF的促凋亡作用受到转录、翻译和翻译后修饰的调控,过表达或者转录上调的BMF主要定位于线粒体,诱导细胞凋亡.由此可见,BMF具有强大的促凋亡功能.  相似文献   

7.
猪丁型冠状病毒(Porcine deltacoronavirus,PDCoV)是一种新型的猪肠道致病性冠状病毒,可引起猪群剧烈腹泻及呕吐,但致病机制尚不清楚。本研究检测了PDCoV感染诱导的细胞凋亡。Caspase酶活性检测显示,在PDCoV感染的细胞中,caspase 3、caspase 8和caspase 9的活性随病毒感染量的增多而显著提高,类似的现象未能在紫外灭活病毒感染的细胞中观察到,表明PDCoV感染可同时激活内源性与外源性细胞凋亡通路,并暗示细胞凋亡的诱导依赖于病毒复制。为深入探究PDCoV诱导的内源性细胞凋亡,分别检测胞浆和线粒体中细胞色素C与凋亡诱导因子。结果显示,与正常细胞相比,PDCoV感染细胞从线粒体释放到胞浆的细胞色素C显著增多,且其释放量随着感染时间的延长而增多,而凋亡诱导因子始终定位于线粒体,提示PDCoV感染通过促使线粒体膜间隙的细胞色素C进入胞浆而启动caspase依赖的线粒体凋亡通路。本研究初步揭示了PDCoV诱导细胞凋亡的机制。  相似文献   

8.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。  相似文献   

9.
热休克蛋白60与细胞凋亡   总被引:5,自引:0,他引:5  
Cao Z  Ma J  Yuan WJ 《生理科学进展》2008,39(3):267-270
热休克蛋白60(heat shock protein 60, HSP60)是主要存在于线粒体内的分子伴侣蛋白,对于维持线粒体蛋白的正常结构和功能不可或缺.线粒体中的HSP60可作用于凋亡相关因子而抑制线粒体凋亡通路的激活,并且能够减少线粒体产生氧自由基;胞浆中的少量HSP60亦可通过与凋亡相关因子的相互作用等途径抑制细胞凋亡.相反,在某些刺激因素作用下或者HSP60细胞定位异常时,HSP60可产生促凋亡效应.HSP60在细胞凋亡中的双重作用及其对于肿瘤等疾病诊治的意义已引起高度关注.  相似文献   

10.
<正>树突状细胞在Toll样受体(TLR)激动剂的刺激下会迅速被激活。已有的研究表明,激活后的树突状细胞胞内的糖酵解水平会被长时间持续性地上调,这是因为细胞在激活的过程中内产生了内源性的一氧化氮(NO),NO能抑制线粒体电子的传导,从而抑制了氧化磷酸化,使得细胞代谢发生向糖酵解方向的转换,继而产生ATP维持细胞的存活。  相似文献   

11.
Nitric oxide induces oxidative stress and apoptosis in neuronal cells   总被引:9,自引:0,他引:9  
Within the central nervous system and under normal conditions, nitric oxide (NO) is an important physiological signaling molecule. When produced in large excess, NO also displays neurotoxicity. In our previous report, we have demonstrated that the exposure of neuronal cells to NO donors induced apoptotic cell death, while pretreatment with free radical scavengers L-ascorbic acid 2-[3, 4-dihydro-2,5,7,8-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) or superoxide dismutase attenuated apoptosis effectively, suggesting that reactive oxygen species (ROS) may be involved in the cascade of events leading to apoptosis. In the present investigation, we directly studied the kinetic generation of ROS in NO-treated neuronal cells by flow cytometry using 2', 7'-dichloro-fluorescein diacetate and dihydrorhodamine 123 as redox-sensitive fluorescence probes. The results indicated that exposure of cerebellar granule cells to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) induced oxidative stress, which was characterized by the accumulation of cytosolic and mitochondrial ROS, the increase in the extracellular hydrogen peroxide level, and the formation of lipid peroxidation products. SNAP treatment also induced apoptotic cell death as confirmed by the formation of cytosolic mono- and oligonucleosomes. Pretreating cells with the novel antioxidant EPC-K1 effectively prevented oxidative stress induced by SNAP, and attenuated cells from apoptosis.  相似文献   

12.
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.  相似文献   

13.
Hyperlipidemia is a major cause of atherosclerosis and atherosclerosis-associated conditions in cardiovascular diseases. Oxidative stress, as a main risk factor causes vascular endothelial cell apoptosis, which is implicated in the pathogenesis of cardiovascular disorders. Diosgenin, an aglycone of steroidal saponins, has been reported to exert anti-proliferative and proapoptotic actions on cancer cells widely. In this study, we propose that diosgenin can protect the hyperlipidemic rats and prevent endothelial apoptosis under oxidative stress. We investigated the hypolipidemic and antioxidative effects of diosgenin on rats fed with high cholesterol and high fat diet for 6 weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), glutathione peroxidase (GSH-PX), nitric oxide synthase (NOS), hepatic malondialdehyde (MDA), lipoprotein lipase (LPL), hepaticlipase (HL) and superoxide dismutase (SOD) activities were evaluated. Then we explored the effects and mechanism of diosgenin against hydrogen peroxide-induced apoptosis of human vein endothelium cells (HUVECs). Intracellular reactive oxygen species (ROS), glutathione (GSH), nitric oxide (NO), DNA fragment formation and mitochondrial membrane potentials (ΔΨm) were determined. Diosgenin treatment increased LPL, HL, SOD, GSH-PX and NOS activities, thus attenuated oxygen free radicals, decreased MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Diosgenin pretreatment significantly attenuated H2O2-induced apoptosis in HUVECs, intracellular ROS, GSH depletion, DNA fragment formation, and restored NO, ΔΨm. These results suggested that diosgenin is a very useful compound to control hyperlipidemia by both improving the lipid profile and modulating oxidative stress and prevent H2O2-induced apoptosis of HUVECs, in partly through regulating mitochondrial dysfunction pathway.  相似文献   

14.
Excess nitric oxide (NO) induces apoptosis in some cell types, including macrophages. Heat shock protein of 70 kDa (hsp70) has been reported to protect cells from various stresses, including apoptosis-inducing stimuli. Several mammalian cytosolic DnaJ homologs, partner chaperones of hsp70 family members, have been identified. We asked if a DnaJ homolog is required to prevent NO-mediated apoptosis. When mouse macrophage-like RAW 264.7 cells were treated with an NO donor, SNAP, apoptosis occurred. This apoptosis could be prevented by pretreatment of the cells with heat or a low dose of SNAP. Under these conditions, levels of hsc70 (an hsp70 member) remained unchanged, whereas hsp70 was markedly induced. Of the DnaJ homologs dj1 (hsp40/hdj-1) was strongly induced and dj2 (HSDJ/hdj-2) was moderately induced. In transfection experiments, hsp70, hsc70, dj1 or dj2 alone was ineffective in preventing NO-mediated apoptosis. In contrast, both dj1 and dj2, in combination with hsc70 or hsp70, prevented the cells from apoptosis. The hsp70-DnaJ chaperone pairs exerted their anti-apoptotic effects upstream of caspase 3 activation, and apparently upstream of cytochrome c release from mitochondria.  相似文献   

15.
Pancreatic β cells are very sensitive to oxidative stress and this might play an important role in β cell death with diabetes. The protective effect of dieckol, one of the phlorotannin polyphenol compounds purified from Ecklonia cava (E. cava), against high glucose-induced oxidative stress was investigated by using rat insulinoma cells. A high-glucose (30 mM) treatment induced the death of rat insulinoma cells, but dieckol, at a concentration 17.5 or 70 μM, significantly inhibited the high-glucose induced glucotoxicity. Treatment with dieckol also dose-dependently reduced thiobarbituric acid reactive substances (TBARS), the generation of intracellular reactive oxygen species (ROS), and the nitric oxide level increased by a high glucose concentration. In addition, the dieckol treatment increased the activities of antioxidative enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in high glucose-pretreated rat insulinoma cells. Dieckol protected rat insulinoma cells damage under high glucose conditions. These effects were mediated by suppressing apoptosis and were associated with increased anti-apoptotic Bcl-2 expression, and reduced pro-apoptotic cleaved caspase-3 expression. These findings indicate that dieckol might be useful as a potential pharmaceutical agent to protect against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.  相似文献   

16.
Introduction  Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Materials and methods  Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl+ cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl+ CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl+ cells. Conclusion  NAC enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide.  相似文献   

17.
An excessive production of nitric oxide (NO) in response to cytokines has been shown to be the major cause of the destruction of islet beta-cells associated with type 1 (insulin-dependent) diabetes mellitus. The NO-induced beta-cell death is the typical apoptosis. In the present study, we show evidence that supports a tight link between NO, Ca2+, protease and apoptosis in beta-cells. Three different NO donors, SNAP, NOR3 and NOC7, induced apoptosis in a beta-cell line, MIN6 cells, in a concentration-dependent manner. SNAP at 200 microM increased cytosolic Ca2+ concentration ([Ca2+]i) and induced apoptosis. The SNAP-induced apoptosis was blocked by a Ca2+ chelator, BAPTA-AM, and by an inhibitor of a Ca2+-dependent protease, calpain. In conclusion, an excessive NO production induces apoptosis, wherein an increase in [Ca2+]i and resultant activation of calpain play a key role.  相似文献   

18.
Abstract: In Parkinson's disease the cell death of dopamine neurons has been proposed to be mediated by an apoptotic death process, in which nitric oxide may be involved. This article reports the induction of apoptosis by nitric oxide and peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells and the antiapoptotic activity of (−)-deprenyl. After the cells were treated with a nitric oxide donor, NOR-4, or a peroxynitrite donor, SIN-1, DNA damage was quantitatively studied using a single-cell gel electrophoresis (comet) assay. NOR-4 and SIN-1 induced DNA damage dose-dependently. Cycloheximide and alkaline treatment of the cells prevented the DNA damage, indicating that the damage is apoptotic and that it depends on the intracellular signal transduction. Superoxide dismutase and the antioxidants reduced glutathione and α-tocopherol protected the cells from the DNA damage. (−)-Deprenyl protected the cells from the DNA damage induced by nitric oxide or peroxynitrite almost completely. The protection by (−)-deprenyl was significant even after it was washed from the cells, indicating that (−)-deprenyl may activate the intracellular system against apoptosis. These results suggest that (−)-deprenyl or related compounds may be neuroprotective to dopamine neurons through its antiapoptotic activity.  相似文献   

19.
We examined the impact of peroxiredoxin-I (Prx-I) and peroxiredoxin-II (Prx-II) stable transduction on oxidative stress in PC12 neurons and NIH3T3 fibroblasts and found variability depending on cell type and Prx subtype. In PC12 neurons, Prx-II suppressed reactive oxygen species (ROS) generation by 36% (p < 0.01) relative to vector-infected control cells. However, in NIH3T3 fibroblasts, Prx-II overexpression resulted in a 97% (p < 0.01) increase in ROS generation. Prx-I transduction elevated ROS generation in PC12 cells. The effect of Prx-I on PC12 cells was potentiated in the presence of menadione, and suppressed by an inhibitor of nitric oxide synthetase. Prx-II transduction resulted in 25–35% lower levels of glutathione (GSH) in both cell types, while Prx-I transduction increased GSH levels in neurons and decreased GSH and caspase-3 activity in fibroblasts. Prx-I and Prx-II also had differing effects on cell viability. These results suggest that Prx-I and Prx-II can either increase or decrease intracellular oxidative stress depending on cell type or experimental conditions, particularly conditions affecting nitric oxide levels.Equivalent contributions were made by each author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号