首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this continuation paper of the work on the chemical and spectrophotometic characteristics of commercial stains, data on the xanthene dyes are presented. In the xanthene group of dyes, it has been found possible to assay pyronin B, eosins B and Y and ethyl eosin by spectrophotometric means. Phloxine B, rose Bengal, and erythrosin B are assayed by die color acid precipitation method. Typical absorption curves are given for these dyes as well as representative spectral and assay data.  相似文献   

2.
Summary The mechanism of gelatine staining with four selected fluorone derivative dyes (eosin y, ethyl eosin, methyl eosin, uranin) was investigated. Gelatine films were stained in dye-buffer-ethanol solutions at varying pH and in the presence of NaCl and urea. Dye binding was recorded spectrophotometrically. Ionization constants of auxochromic phenolic groups were determined from pH-absorbance curves of dye-buffer-ethanol solutions. Dyebinding was greatest at pH below pKOH and decreased with increasing pH. The addition of NaCl reduced dye binding slightly below pKOH but markedly above pKOH. The addition of 8 M urea decreased dyebinding regardless of pH. Comparing the pH dependence of dyebinding for eosin y and esterified eosins with ionization constants revealed that ionic bonding is unlikely to occur at the carboxyl group as well as at the phenolic group. Dye binding is intimately related to the presence of Br-groups. These results are discussed in conjunction with the functional structure of the dye ions and current concepts of dyebinding mechanisms.  相似文献   

3.
The components of the hematoxylin and eosin (H & E) stain (i.e. hemalum and eosin Y), their contributions to the typical staining pattern, and the reasons why the H & E stains are the preferred oversight stains for routine diagnostic histopathology are discussed. The essential diagnostic significance of effective nuclear staining by hemalum, providing information on nuclear morphology and texture, is emphasized; as is the ironic advantage for routine diagnostic histopathology of the limited range of colors provided by H & E staining, that allows recognition of significant features under low microscopic magnifications. Standardization of hemalum is considered, along with probable reasons why users show resistance to such a concept. Counterstaining with anionic (acid) dyes is discussed, as is the important phenomenon of contrast. The particular advantages and disadvantages of eosin Y and phloxin B as counterstains to hemalum are outlined. The concept of an “ideal routine histological stain” is considered, and H & E is compared to such an ideal case. Finally, deficiencies of H & E staining are discussed, and a program to develop an improved oversight stain is introduced.  相似文献   

4.
The components of the hematoxylin and eosin (H & E) stain (i.e. hemalum and eosin Y), their contributions to the typical staining pattern, and the reasons why the H & E stains are the preferred oversight stains for routine diagnostic histopathology are discussed. The essential diagnostic significance of effective nuclear staining by hemalum, providing information on nuclear morphology and texture, is emphasized; as is the ironic advantage for routine diagnostic histopathology of the limited range of colors provided by H & E staining, that allows recognition of significant features under low microscopic magnifications. Standardization of hemalum is considered, along with probable reasons why users show resistance to such a concept. Counterstaining with anionic (acid) dyes is discussed, as is the important phenomenon of contrast. The particular advantages and disadvantages of eosin Y and phloxin B as counterstains to hemalum are outlined. The concept of an “ideal routine histological stain” is considered, and H & E is compared to such an ideal case. Finally, deficiencies of H & E staining are discussed, and a program to develop an improved oversight stain is introduced.  相似文献   

5.
The performances of two standardized Romanowsky stains (azure B/eosin and azure B/methylene blue/eosin) have been compared with each other and with a methylene blue/eosin stain. Visible-light absorbance spectra of various hematological substrates have been measured. These have been analyzed in terms of the quantities of bound azure B, methylene blue and eosin dimers and monomers, and in terms of the CIE color coordinates. It has been found that the addition of methylene blue to azure B/eosin produces little change in performance, at least using these two analytical methods. Methylene blue/eosin does not produce the purplish colorations typical of the Romanowsky effect. This is due not to differences between the spectra of methylene blue and azure B, but to the fact that methylene blue does not facilitate the binding of eosin to cellular substrates to the same extent as azure B.  相似文献   

6.
The performances of two standardized Romanowsky stains (azure B/eosin and azure B/methylene blue/eosin) have been compared with each other and with a methylene blue/eosin stain. Visible-light absorbance spectra of various hematological substrates have been measured. These have been analyzed in terms of the quantities of bound azure B, methylene blue and eosin dimers and monomers, and in terms of the CIE color coordinates. It has been found that the addition of methylene blue to azure B/eosin produces little change in performance, at least using these two analytical methods. Methylene blue/eosin does not produce the purplish colorations typical of the Romanowsky effect. This is due not to differences between the spectra of methylene blue and azure B, but to the fact that methylene blue does not facilitate the binding of eosin to cellular substrates to the same extent as azure B.  相似文献   

7.
Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy. Using eosin attached to the SH-1 thiol of the myosin head differing rotational modes of the bound probe were detected, dependent upon excitation wavelength. The main features of the anisotropy data for eosin-myosin are consistent with the existence of a 'crevice' or 'pocket' in the myosin head. A model is presented which allows estimation of the ratio of distinct rotational diffusion terms (selected by different excitation wavelengths) that produce both the observed steady-state anisotropy and differential phase results.  相似文献   

8.
The Romanowsky-Giemsa staining (RG staining) has been studied by means of microspectrophotometry using various staining conditions. As cell material we employed in our model experiments mouse fibroblasts, LM cells. They show a distinct Romanowsky-Giemsa staining pattern. The RG staining was performed with the chemical pure dye stuffs azure B and eosin Y. In addition we stained the cells separately with azure B or eosin Y. Staining parameters were pH value, dye concentration, staining time etc. Besides normal LM cells we also studied cells after RNA or DNA digestion. The spectra of the various cell species were measured with a self constructed microspectrophotometer by photon counting technique. The optical ray pass and the diagramm of electronics are briefly discussed. The nucleus of RG stained LM cells, pH congruent to 7, is purple, the cytoplasm blue. After DNA or RNA digestion the purple respectively blue coloration in the nucleus or the cytoplasm completely disappeares. Therefore DNA and RNA are the preferentially stained biological substrates. In the spectrum of RG stained nuclei, pH congruent to 7, three absorption bands are distinguishable: They are A1 (15400 cm-1, 649 nm), A2 (16800 cm-1, 595 nm) the absorption bands of DNA-bound monomers and dimers of azure B and RB (18100 cm-1, 552 nm) the distinct intense Romanowsky band. Our extensive experimental material shows clearly that RB is produced by a complex of DNA, higher polymers of azure B (degree of association p greater than 2) and eosin Y. The complex is primarily held together by electrostatic interaction: inding of polymer azure B cations to the polyanion DNA generates positively charged binding sites in the DNA-azure B complex which are subsequently occupied by eosin Y anions. It can be spectroscopically shown that the electronic states of the azure B polymers and the attached eosin Y interact. By this interaction the absorption of eosin Y is red shifted and of the azure B polymers blue shifted. The absorption bands of both molecular species overlap and generate the Romanowsky band. Its strong maximum at 18100 cm-1 is due to the eosin Y part of the DNA-azure B-eosin Y complex. The discussed red shift of the eosin Y absorption is the main reason for the purple coloration of RG stained nuclei. Using a special technique it was possible to prepare an artificial DNA-azure B-eosin Y complex with calf thymus DNA as a model nucleic acid and the two dye stuffs azure B and eosin Y.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

10.
Histone differentiation and nuclear activity   总被引:4,自引:0,他引:4  
When fast green and eosin are used in combination to stain histones, nuclei display different affinities toward the dyes, some binding fast green exclusively, others binding eosin exclusively, and still others, both stains. In a given tissue, the frequencies of nuclei exhibiting the different colors remain fairly constant over a wide range of staining conditions. Nuclei of cells of the same type may stain differently, but when they are in the same stage of development or state of activity they tend to stain alike. Xenopus erythrocyte nuclei stain bright pink. Condensed mitotic and meiotic chromosomes stain purple. In the grasshopper spermatocyte, the main body of the interphase nucleus stains bright green, but the condensed chromosome stains purple. The mole crab sperm contains several distinct histone-like proteins, that differ in their amino acid compositions, within separate areas of the cell. In these sperms, the lysine-rich histones bind eosin, while the protamine-like protein and arginine-rich histone bind fast green. In general, the eosin and fast green bind preferentially to the lysine and arginine rich histones respectively, when the dyes are permitted to compete with one another. In several systems, including spermiogenesis and erythropoiesis, the aquisition of an eosinophilic component by the nuclei accompanies the slowing of RNA synthesis, and it is suggested that there may be a causal relationship between the two events, the eosinophilic histone effecting RNA synthesis within the nucleus as a whole.  相似文献   

11.
Additional experimental work on the subject of eosin hemolysis has been carried out. This indicates that red cells may be protected against the toxic action of eosin in sunlight by the presence of inorganic reducing agents. It is pointed out that a marked parallelism exists between the substances which react with the Folin and Denis reagent and the compounds which afford protection to red cells against the photodynamic action of eosin. The property which is possessed in common by all of the substances is that they are easily oxidized, and their ability to protect red cells lies in their power of reduction. The toxic action of eosin probably involves the oxidation of tyrosine and tryptophane which are contained in the protein molecules of the stroma.  相似文献   

12.
Using polyacrylamide films containg poly-lysine, polyarginine and DNA as test models, a variety of reportedly specific staining procedures have been examine. Contrary to published observations, mixtures of fast green and eosin Y show no specific staining of either lysine or arginine. Both amino-acids bind eosin from the mixture more strongly than fast green. Arginine apparently has a greater affinity for this eosin than has lysine which contradicts previous reports that lysine will be stained by eosin arginine will stain with fast green, if proteins containing both amino-acids are stained with dye mixture. In films containing lysine and/or arginine picric acid is shown to bind specifically to the arginine. The picric acidarginine complex resists disruption in 0.004 M borate buffer which is a solvent used for subsequent staining of lysine residues with bromophenol blue. Picric acid may also be used as a hydrolysant and substitute for hydrocholoric acid in a Feulgen-like procedure which stains DNA to the same level as the classiclal hydrochloric acid based procedure while also staining arginine present.  相似文献   

13.
We report a study on the effect of the fluorescent probe eosin on some of the reactions involved in the conformational transitions that lead to the occlusion of the K(+)-congener Rb(+) in the Na(+)/K(+)-ATPase. Eosin decreases the equilibrium levels of occluded Rb(+), this effect being fully attributable to a decrease in the apparent affinity of the enzyme for Rb(+) since the capacity for occlusion remains independent of eosin concentration. The results can be quantitatively described by a model that assumes that two molecules of eosin are able to bind to the Na(+)/K(+)-ATPase, both to the Rb(+)-free and to the Rb(+)-occluded enzyme regardless of the degree of cation occlusion. Concerning the effect on the affinity for Rb(+) occlusion, transient state experiments show that eosin reduces the initial velocity of occlusion, and that, like ATP, it increases the velocity of deocclusion of Rb(+). Interactions between eosin and ATP on Rb(+)-release experiments seem to indicate that eosin binds to the low-affinity site of ATP from which it exerts effects that are similar to those of the nucleotide.  相似文献   

14.
The tuberculostatic and carcinogenic drug isonicotinic acid hydrazide (“isoniazid”) is oxidized to pyridine-4-carboxaldehyde by the horseradish peroxidase/Mn2+/O2 system. Eosin and related sensitizers greatly accelerate the reaction and generate light detectable with the liquid scintillation counter or with the photon counter. If the isoniazid concentration is raised, the rate and extent of O2 uptake are increased, but above a certain concentration of isoniazid, emission is reduced and even suppressed. The strong quencher of triplet eosin, potassium ferricyanide, abolished both effects of eosin, that is, catalysis and light emission. Superoxide dismutase at high concentrations partially suppressed the emission and almost totally removed the catalytic effect. It is tentatively proposed that the isoniazid/peroxidase/Mn2+/O2 system efficiently produces the aldehyde in the triplet state, which in turn transfers energy to eosin. Because of the presence of oxygen, only a small yield of triplet eosin is obtained and only a small fraction of these triplet eosin molecules is able to react with isoniazid. Nevertheless, it will contribute efficiently to a cyclic process of oxidation of the isoniazid.  相似文献   

15.
A simple, rapid and inexpensive assay method for the colored components of commercial samples of eosin is described. Samples are dissolved in dilute aqueous ammonia and absorbance measurements made at wavelengths of 492 nm, 512 nm, and 518 nm. The concentrations of fluorescein, tribomofluorescein and eosin are derived by solution of simulataneous equations in three unknowns. The validity of the method has been confirmed by recovery experiments. Mean recoveries of fluorescein, tribromofluorescein and eosin were 99.1%, 100.2% and 98.8% respectively. Seventeen commercial samples have been assayed by this procedure. Concentrations of fluorescein, tribromofluorescein and eosin ranged from 0.00%-0.82%, 4.34%-29.92% and 44.89%-82.82% respectively. The sodium concentrations of the same samples were measured by atomic absorption spectrophotometry and found to range from 0.10% to 6.13%. The presence of free halide (Br-, Cl-, or both) was demonstrated. These observations, together with color variations in the samples, indicate that in commercial products eosin is in the form of both the free acid and sodium salt. Volatile matter accounted for 1.68%-16.11% of the samples.  相似文献   

16.
A large series of compounds was screened for ability to protect trypsin from eosin-sensitized photodynamic inactivation. Eosin-sensitized photooxidation reactions of this type typically proceed via the triplet state of the dye and often involve singlet state oxygen as the oxidizing entity. In order to determine the mechanisms by which trypsin is protected from photoinactivation, a number of good protective agents (inhibitors) and some non-protective agents were selected for more detailed flash photolysis studies. Good inhibitors such as p-phenylenediamine, n-propyl gallate, serotonin creatinine sulfate and p-toluenediamine competed efficiently with oxygen and with trypsin for reaction with the triplet state of eosin. The inhibitors were shown to quench triplet eosin to the ground state and/or reduce triplet eosin to form the semireduced eosin radical and an oxidized form of the inhibitor. In the latter case, oxidized inhibitor could react by a reverse electron transfer reaction with the semi-reduced eosin radical to regenerate ground state eosin and the inhibitor. The good inhibitors also competed effectively with trypsin for oxidation by semioxidized eosin, thus giving another possible protective mechanism. Non-inhibitors such as halogen ions and the paramagnetic ions Co++, Cu++ and Mn++ reacted only slowly with triplet and with seimioxidized eosin. The primary pathway for the eosin-sensitized photooxidation of trypsin at pH 8.0 involved singlet oxygen, although semioxidized eosin may also participate.  相似文献   

17.
Air-dried rabbit blood was stained by HE, PAS and a modification of the Undritz II method. Eosin stained granules red in the eosinophil leukocytes. PAS was negative and the modified Undritz method failed to give consistent results. Cells with eosinophilic granules appeared in the corneal stroma 1 h after removing the corneal epithelium. They were stained red consistently by both eosin and the modified Undritz II method. Electron micrographs failed to demonstrate crystalloids in the granules. Because of the staining characteristics and the lack of crystalloids in their granules these cells were classified as pseudoeosinophil leukocytes. The electron micrographs showed some glycogen 12 h after denuding the cornea, however, glycogen was not well stained by PAS until 18 h after denuding.  相似文献   

18.
Thirteen dyes of the azo (benzopurpurin, Congo red, trypan blue, chromotrope 2R, orange G), indigoid (indigocarmine), triphenylmethane (acid fuchsin, aniline blue, light green, methyl blue), and xanthene (eosin B, eosin Y, erythrosin B) groups were applied under standard conditions to a variety of human, rabbit, rat, mouse and frog tissues in paraffin sections. Sections were examined for color changes which might indicate metachromatic reactions analogous to the metachromasy of cationic dyes. Disazo and xanthene dyes showed shifts in hue, with some qualification on the shifts of xanthenes. Metachromatic shifts of anionic dyes were generally of low order compared to those of cationic dyes. Nuclei, erythrocytes, inner elastic laminae of arteries, keratinous structures, and certain areas in the ground substance of connective tissue most often elicited metachromasy. It is suggested that basic proteins are responsible for the metachromatic reactions. Equally interesting areas were those staining poorly (cartilage matrix, most types of mucus), since these are sites of highly acidic substances capable of binding proteins.  相似文献   

19.
We describe a novel high-resolution method to detect F-actin at the light and electron microscopic levels through the use of the actin-binding protein phalloidin conjugated to the fluorophore eosin, followed by photo-oxidation of diaminobenzidine. This method possesses several key advantages over antibody-based labeling and structural methods. First, phalloidin binding to F-actin can tolerate relatively high concentrations of glutaraldehyde (up to 1%) in the primary fixative, resulting in good ultrastructural preservation. Second, because both eosin and phalloidin are relatively small molecules, considerable penetration of reagents into aldehyde-fixed tissue was obtained without any permeabilization steps, allowing 3D reconstructions at the electron microscopic level. By employing a secondary fixation with tannic acid combined with low pH osmication, conditions known to stabilize actin filaments during preparation for electron microscopy, we were able to visualize individual actin filaments in some structures. Finally, we show that fluorescent phalloidin can be directly injected into neurons to label actin-rich structures such as dendritic spines. These results suggest that the fluorescent phalloidin is an excellent tool for the study of actin networks at high resolution.  相似文献   

20.
Among various dyes including congo red, thioflavin S, thioflavin T, eosin, rhodamine 6G, and phenol red, the eosin was the only dye that induced self-oligomerization of alpha-synuclein in the presence of a chemical coupling reagent of N-(ethoxycarbonyl)-2-ethoxy-1, 2-dihydroquinoline. To analyze chemical nature of the eosin interaction with alpha-synuclein, the phenomenon of self-oligomerization was further examined with eosin congeners such as ethyl eosin, eosin B, phloxine B, erythrosin B, and rose bengal. The followings are the conclusions we have reached. First of all, intactness of the benzoate moiety of eosin and the negative charge on the carboxylic group of the dye are important factors leading to the specific interaction with alpha-synuclein. Secondly, the localized negative charge on the xanthene moiety of eosin is another critical factor for the interaction. As far as substituting halides are concerned, bromides and iodides on the xanthene moiety of the dyes do not make any difference on the alpha-synuclein interaction because both eosin and erythrosin B have induced the common phenomenon of self-oligomerization. The binding curve between eosin and alpha-synuclein was sigmoidal as the dye concentrations were increased. A double reciprocal plot of the saturation curve showed that the maximum number of eosin binding sites on alpha-synuclein was 1.85 with a dissociation constant of 390 microM. The dye binding to the protein appeared to occur via a positive cooperativity. The eosin binding site(s) was suggested to be located predominantly on the NAC region and partly related to the acidic C-terminus of alpha-synuclein. It has been, therefore, expected that this information might be useful to develop alpha-synuclein interactive molecules, which could provide eventual preventive or possible therapeutic means against various alpha-synuclein related disorders including Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号