首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Caveolin-1 was discovered as a major substrate for v-Src, but the effect of its tyrosine phosphorylation has not been known. We generated a specific antibody (PY14) to caveolin-1 phosphorylated at tyrosine 14 and studied the significance of the modification. By Western blotting of lysates of v-Src-expressing cells, PY14 recognized not only a 22-kDa band (the position of nonphosphorylated caveolin-1) but bands at 23-24 and 25 kDa. Bands of slower mobility were diminished by dephosphorylation and were also observed for mutant caveolin-1 lacking tyrosine 14. By immunofluorescence microscopy, PY14 did not label normal cells but detected large dots in v-Src-expressing cells. Immunoelectron microscopy revealed that the dots corresponded to aggregated caveolae and/or vesicles of various sizes; besides, the label was observed in intramembrane particle-free areas in the plasma membrane, which appeared to have been formed by fusion of flattened caveolae. A positive reaction with PY14 was found in normal cells after vanadate or pervanadate treatment; it occurred mainly at 22 kDa by Western blotting and was not seen as large dots by immunofluorescence microscopy. Detergent solubility, oligomerization, and association with caveolin-2 were observed similarly for caveolin-1 in normal and v-Src-expressing cells. The results indicate that phosphorylation of caveolin-1 in v-Src-expressing cells occurs at multiple residues and induces flattening, aggregation, and fusion of caveolae and/or caveolae-derived vesicles.  相似文献   

2.

Background

The insulin receptor is localized in caveolae and is dependent on caveolae or cholesterol for signaling in adipocytes. When stimulated with insulin, the receptor is internalized.

Methodology/Principal Findings

We examined primary rat adipocytes by subcellular fractionation to examine if the insulin receptor was internalized in a caveolae-mediated process. Insulin induced a rapid, t1/2<3 min, endocytosis of the insulin receptor in parallel with receptor tyrosine autophosphorylation. Concomitantly, caveolin-1 was phosphorylated at tyrosine(14) and endocytosed. Vanadate increased the phosphorylation of caveolin-1 without affecting insulin receptor phosphorylation or endocytosis. Immunocapture of endosomal vesicles with antibodies against the insulin receptor co-captured caveolin-1 and immunocapture with antibodies against tyrosine(14)-phosphorylated caveolin-1 co-captured the insulin receptor, demonstrating that the insulin receptor was endocytosed together with tyrosine(14)-phosphorylated caveolin-1. By immunogold electron microscopy the insulin receptor and caveolin-1 were colocalized in endosome vesicles that resembled caveosomes. Clathrin was not endocytosed with the insulin receptor and the inhibitor of clathrin-coated pit-mediated endocytosis, chlorpromazine, did not inhibit internalization of the insulin receptor, while transferrin receptor internalization was inhibited.

Conclusion

It is concluded that in response to insulin stimulation the autophosphorylated insulin receptor in primary adipocytes is rapidly endocytosed in a caveolae-mediated process, involving tyrosine phosphorylation of caveolin-1.  相似文献   

3.
Endothelial cells are subjected to hemodynamic shear stress, which regulates multiple vascular functions partially by the caveolin-1-dependent mechanisms. Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae and interacts with various signaling molecules. Recently, caveolin-1 was elucidated to be phosphorylated on tyrosine 14. However, it is not known how phosphorylation of caveolin-1 is controlled in endothelium. In this study, we found that caveolin-1 is phosphorylated by p38 mitogen-activated protein kinase (MAPK) under a static condition. When endothelial cells were exposed to shear stress, caveolin-1 was transiently dephosphorylated. Since the activity of p38 MAPK was not affected by shear stress, the shear-dependent dephosphorylation of caveolin-1 was not mediated by p38 MAPK. Of interest, sodium orthovanadate, an inhibitor for phosphatases, blocked the shear-dependent dephosphorylation of caveolin-1. We also observed that protein tyrosine phosphatase mu was transiently activated by shear stress, suggesting its role in the dephosphorylation of caveolin-1.  相似文献   

4.
Caveolin-1 was initially identified as a phosphoprotein in Rous sarcoma virus-transformed cells. Previous studies have shown that caveolin-1 is phosphorylated on tyrosine 14 by c-Src and that lipid modification of c-Src is required for this phosphorylation event to occur in vivo. Phosphocaveolin-1 (Tyr(P)-14) localizes within caveolae near focal adhesions and, through its interaction with Grb7, augments anchorage-independent growth and epidermal growth factor-stimulated cell migration. However, the cellular factors that govern the coupling of caveolin-1 to the c-Src tyrosine kinase remain largely unknown. Here, we show that palmitoylation of caveolin-1 at a single site (Cys-156) is required for coupling caveolin-1 to the c-Src tyrosine kinase. Furthermore, upon evaluating a battery of nonreceptor and receptor tyrosine kinases, we demonstrate that the tyrosine phosphorylation of caveolin-1 by c-Src is a highly selective event. We show that Src-induced tyrosine phosphorylation of caveolin-1 can be inhibited or uncoupled by targeting dually acylated proteins (namely carcinoembryonic antigen (CEA), CD36, and the NH(2)-terminal domain of Galpha(i1)) to the exoplasmic, transmembrane, and cytoplasmic regions of the caveolae membrane, respectively. Conversely, when these proteins are not properly targeted or lipid-modified, the ability of c-Src to phosphorylate caveolin-1 remains unaffected. In addition, when purified caveolae preparations are preincubated with a myristoylated peptide derived from the extreme N terminus of c-Src, the tyrosine phosphorylation of caveolin-1 is abrogated; the same peptide lacking myristoylation has no inhibitory activity. However, an analogous myristoylated peptide derived from c-Yes also has no inhibitory activity. Thus, the inhibitory effects of the myristoylated c-Src peptide are both myristoylation-dependent and sequence-specific. Finally, we investigated whether phosphocaveolin-1 (Tyr(P)-14) interacts with the Src homology 2 and/or phosphotyrosine binding domains of Grb7, the only characterized downstream mediator of its function. Taken together, our data identify a series of novel lipid-lipid-based interactions as important regulatory factors for coupling caveolin-1 to the c-Src tyrosine kinase in vivo.  相似文献   

5.
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.  相似文献   

6.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is constitutively expressed in lymphatic vessels and transiently in endothelial cells of blood vessels during angiogenesis. Here we report that VEGFR-3 localizes in the caveolae membrane of endothelial cells and co-immunoprecipitates with caveolin-1. Caveolin-1 silencing or its depletion from the cell membrane by cholesterol increases VEGFR-3 autophosphorylation, suggesting that caveolin acts as a negative regulator of VEGFR-3 activity. Receptor activation induces caveolin-1 phosphorylation on tyrosine residues including tyrosine 14. Cell treatment with Src or Abl inhibitors PP2 or STI571, prior to receptor stimulation, affects caveolin-1 phosphorylation without affecting receptor autophosphorylation, suggesting that both Src and Abl are involved in VEGFR-3-dependent caveolin-1 phosphorylation. Caveolin-1 phosphorylation in Src/Fyn/Yes knockout cells demonstrated that Abl phosphorylates caveolin-1 independently from Src family members. These results suggest a functional interaction between VEGFR-3 and caveolin-1 to modulate endothelial cell activation during angiogenesis.  相似文献   

7.
Caveolin-1, a main structural protein constituent of caveolae, plays an important role in the signal transduction, endocytosis, and cholesterol transport. In addition, caveolin-1 has conflictive role in the regulation of cell survival and death depending on intracellular signaling pathways. The receptor tyrosine kinase TrkA has been known to interact with caveolin-1, and exploits multiple functions such as cell survival, death and differentiation. In this report, we investigated how TrkA-induced cell death signaling is regulated by caveolin-1 in both TrkA and caveolin-1 overexpressing stable U2OS cells. Here we show that TrkA co-localizes with caveolin-1 mostly as a large aggresome around nucleus by confocal immunofluorescence microscopy. Interestingly, TrkA-mediated Bak cleavage was suppressed by caveolin-1, indicating an inhibition of TrkA-induced cell death signaling by caveolin-1. Moreover, caveolin-1 altered TrkA modification including tyrosine-490 phosphorylation and unidentified cleavage(s), resulting in the inhibition of TrkA-induced apoptotic cell death. Our results suggest that caveolin-1 could suppress TrkA-mediated pleiotypic effects by altering TrkA modification via functional interaction.  相似文献   

8.
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells.  相似文献   

9.
Participation of caveolae in beta1 integrin-mediated mechanotransduction   总被引:3,自引:0,他引:3  
We previously reported that caveolin-1 is a key component in a beta1 integrin-dependent mechanotransduction pathway suggesting that caveolae organelles and integrins are functionally linked in their mechanotransduction properties. Here, we exposed BAEC monolayers to shear stress then isolated caveolae vesicles form the plasma membrane. While little beta1 integrin was detected in caveolae derived from cells kept in static culture, shear stress induced beta1 integrin transposition to the caveolae. To evaluate the significance of shear-induced beta1 integrin localization to caveolae, cells were pretreated with cholesterol sequestering compounds or caveolin-1 siRNA to disrupt caveolae structural domains. Cholesterol depletion attenuated integrin-dependent caveolin-1 phosphorylation, Src activation and Csk association with beta1 integrin. Reduction of both caveolin-1 protein and membrane cholesterol inhibited downstream shear-induced, integrin-dependent phosphorylation of myosin light chain. Taken together with our previous findings, the data supports the concept that beta1 integrin-mediated mechanotransduction is mediated by caveolae domains.  相似文献   

10.
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-insulin infusion (with euglycemia maintained). The FITC-insulin distribution was compared with that of insulin receptors (IR), IGF-I receptors (IGF-IR), and caveolin-1 (a protein marker for caveolae) in skeletal muscle vasculature. We observed that muscle endothelium stained strongly for FITC-insulin within 10 min, and this persisted to 60 min. Endothelium stained more strongly for FITC-insulin than any other cellular elements in muscle. IR, IGF-IR, and caveolin-1 were also detected immunohistochemically in muscle endothelial cells. We further compared their intracellular distribution with that of FITC-insulin in cultured bovine aortic endothelial cells (bAECs). Considerable colocalization of IR or IGF-IR with FITC-insulin was noted. There was some but less overlap of IR or IGF-IR or FITC-insulin with caveolin-1. Immunoprecipitation of IR coprecipitated caveolin-1, and conversely the precipitation of caveolin-1 brought down IR. Furthermore, insulin increased the tyrosine phosphorylation of caveolin-1, and filipin (which inhibits caveolae formation) blocked insulin uptake. Finally, the ability of insulin, IGF-I, and IGF-I-blocking antibody to diminish insulin transport across bAECs grown on transwell plates suggested that IGF-IR, in addition to IR, can also mediate transendothelial insulin transit. We conclude that in vivo endothelial cells rapidly take up and concentrate insulin relative to plasma and muscle interstitium and that IGF-IR, like IR, may mediate insulin transit through endothelial cells in a process involving caveolae.  相似文献   

11.
The stimulation of vascular endothelial growth factor receptor-2 (VEGFR-2) by tumor-derived VEGF represents a key event in the initiation of angiogenesis. In this work, we report that VEGFR-2 is localized in endothelial caveolae, associated with caveolin-1, and that this complex is rapidly dissociated upon stimulation with VEGF. The kinetics of caveolin-1 dissociation correlated with those of VEGF-dependent VEGFR-2 tyrosine phosphorylation, suggesting that caveolin-1 acts as a negative regulator of VEGF R-2 activity. Interestingly, we observed that in an overexpression system in which VEGFR-2 is constitutively active, caveolin-1 overexpression inhibits VEGFR-2 activity but allows VEGFR-2 to undergo VEGF-dependent activation, suggesting that caveolin-1 can confer ligand dependency to a receptor system. Removal of caveolin and VEGFR-2 from caveolae by cholesterol depletion resulted in an increase in both basal and VEGF-induced phosphorylation of VEGFR-2, but led to the inhibition of VEGF-induced ERK activation and endothelial cell migration, suggesting that localization of VEGFR-2 to these domains is crucial for VEGF-mediated signaling. Dissociation of the VEGFR-2/caveolin-1 complex by VEGF or cyclodextrin led to a PP2-sensitive phosphorylation of caveolin-1 on tyrosine 14, suggesting the participation of Src family kinases in this process. Overall, these results suggest that caveolin-1 plays multiple roles in the VEGF-induced signaling cascade.  相似文献   

12.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, increases caveolae density, and leads to enhanced mechanosensitivity to subsequent changes in hemodynamic forces within cultured endothelial cells. Flow-preconditioned cells expressed a fivefold increase in caveolin (and other caveolar-residing proteins) at the luminal surface compared with no-flow controls. The density of morphologically identifiable caveolae was enhanced sixfold at the luminal cell surface of flow-conditioned cells. Laminar shear stress applied to static endothelial cultures (flow step of 5 dyn/cm2), enhanced the tyrosine phosphorylation of luminal surface proteins by 1.7-fold, including caveolin-1 by 1.3-fold, increased Ser1179 phosphorylation of endothelial nitric oxide synthase (eNOS) by 2.6-fold, and induced a 1.4-fold activation of mitogen-activated protein kinases (ERK1/2) over no-flow controls. The same shear step applied to endothelial cells preconditioned under 10 dyn/cm2 of laminar shear stress for 6 h and induced a sevenfold increase of total phosphotyrosine signal at the luminal endothelial cell surface enhanced caveolin-1 tyrosine phosphorylation 5.8-fold and eNOS phosphorylation by 3.3-fold over static control values. In addition, phosphorylated caveolin-1 and eNOS proteins were preferentially localized to caveolar microdomains. In contrast, ERK1/2 activation was not detected in conditioned cells after acute shear challenge. These data suggest that cultured endothelial cells respond to a sustained flow environment by directing caveolae to the cell surface where they serve to mediate, at least in part, mechanotransduction responses.  相似文献   

13.
We have recently shown that stimulation of endothelial cells with vascular endothelial growth factor (VEGF) induces dissociation of caveolin-1 from the VEGFR-2 receptor, followed by Src family kinase-dependent tyrosine phosphorylation of the protein (Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beliveau, R. (2003) Mol. Biol. Cell 14, 334-347). In this study, we provide evidence that the VEGF-dependent tyrosine phosphorylation of caveolin-1 induces interaction of the protein with the membrane-type 1 matrix metalloproteinase (MT1-MMP). This interaction requires the phosphorylation of caveolin-1 on tyrosine 14 by members of the Src family of protein kinases, such as Src and Fyn, because it is completely abolished by expression of a catalytically inactive Src mutant or by site-directed mutagenesis of tyrosine 14 of caveolin-1. Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity. The association of MT1-MMP with phosphorylated caveolin-1 occurs in caveolae membranes and involves the cytoplasmic domain of MT1-MMP because it was markedly reduced by mutation of Cys574 and Val582 residues of the cytoplasmic tail of the enzyme. Most interestingly, the reduction of the interaction between MT1-MMP and caveolin-1 by using these mutants also decreases MT1-MMP-dependent cell locomotion. Overall these results indicate that MT1-MMP associates with tyrosine-phosphorylated caveolin-1 and that this complex may play an important role in MT1-MMP regulation and function.  相似文献   

14.
Previous studies have shown that EGF can induce the tyrosine phosphorylation of caveolin-1 in murine fibroblasts following ErbB1 (EGF receptor) mutation or overexpression, but the cell signaling events linking EGF action with caveolin phosphorylation are not fully established. In this regard, we examined multiple human carcinoma cell lines that express various ErbB family members, including A431 epidermoid carcinoma cells and several squamous carcinoma cell lines. In all cases, EGF treatment induced the tyrosine phosphorylation of caveolin-1 in a time- and EGF dose-dependent manner, and immunoblotting analysis revealed that this phosphorylation occurred at tyrosine-14. The EGF-dependent phosphorylation of caveolin-1 was observed at low temperatures (4 degrees C) and was enhanced by caveolae-disrupting agents (cyclodextrin), suggesting that this EGF-dependent system is in a low temperature-stable arrangement that allows for their interaction under conditions where mobility in the membrane is altered. To further assess the events linking EGF action with caveolin phosphorylation, we evaluated the ligand specificity of these responses and their dependence on known effectors of EGF receptor function. We observed that EGF and HB-EGF, but not heregulin, promoted caveolin-1 phosphorylation in A431 cells, suggesting that these responses are linked to EGF receptor activation and not solely occurring via the activation of other endogenous ErbB family members. In addition, the EGF-induced phosphorylation of caveolin-1 in A431 cells was blocked by the Src kinase antagonists PP1 and PP2, but not by the MEK inhibitor PD98059, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin, or cytoskeleton-disrupting agents, such as cytochalasin D, colchicine, and nocadazole. Altogether, these data indicate that multiple human carcinoma cells exhibit an EGF receptor-dependent tyrosine phosphorylation of caveolin-1 and that this process is sensitive to Src family kinase inhibitors. These observations support a role for caveolin tyrosine phosphorylation in the profile of cellular responses by which Src potentiates cancer progression following EGF receptor overexpression.  相似文献   

15.
Caveolae-mediated endocytosis in endothelial cells is stimulated by the binding of albumin to gp60, a specific albumin-binding protein localized in caveolae. The activation of gp60 induces its cell surface clustering and association with caveolin-1, the caveolar-scaffolding protein. This interaction leads to G(i)-induced Src kinase activation, which in turn signals dynamin-2-mediated fission and directed migration of caveolae-derived vesicles from apical to basal membrane. In this study, we investigated the possible role of the Gbetagamma heterodimer in signaling G(i)-induced Src activation and subsequent caveolae-mediated endocytosis. We observed using rat lung microvascular endothelial cells that expression of the C terminus of beta-adrenergic receptor kinase (ct-betaARK), an inhibitor Gbetagamma signaling, prevented gp60-dependent Src activation as well as caveolae-mediated endocytosis and transcellular transport of albumin and uptake of cholera toxin subunit B, a specific marker of caveolae internalization. Expression of ct-betaARK also prevented Src-mediated tyrosine phosphorylation of caveolin-1 and dynamin-2 and the resultant phosphorylation-dependent association of dynamin-2 and caveolin-1. Also, the direct activation of Gbetagamma using a specific cell-permeant activating peptide (myristoylated-SIRKALNILGYPDYD) simulated the effects of gp60 in inducing Src activation, caveolin-1, and dynamin-2 phosphorylation as well as caveolae-mediated endocytosis of cholera toxin subunit B. The myristoylated-SIRKALNILGYPDYD peptide-induced responses were inhibited by the expression of ct-betaARK. Taken together, our results demonstrate that Gbetagamma activation of Src signals caveolae-mediated endocytosis and transendothelial albumin transport via transcytosis.  相似文献   

16.
Caveolae are plasmamembrane regions which take part in the regulation of intracellular trafficking and signaling of tyrosine kinase receptors. Insulin and IGF-I receptors and their intracellular substrates localize in caveolae. Also eNOS is targeted to caveolae and caveolin-1, the major caveolar protein, acts as a regulator of eNOS activity. Since Insulin and IGF-I phosphorylate and activate eNOS, we investigated the role of caveolin-1 in Insulin and IGF-I stimulated eNOS activity. Here we show that: (1) in human endothelial cells, Insulin and IGF-I stimulate eNOS phosphorylation in a different manner both qualitatively and quantitatively; (2) caveolin-1 down regulation abolishes Insulin and IGF-I stimulated eNOS phosphorylation. These results suggest that caveolae could represent an intracellular site that contributes to differentiate IR and IGF-IR activity, and demonstrate the role of caveolin-1 in the eNOS activation by Insulin and IGF-I.  相似文献   

17.
Endothelial barrier function is regulated in part by the transcellular transport of albumin and other macromolecules via endothelial caveolae (i.e., this process is defined as transcytosis). Using pulmonary microvascular endothelial cells, we have identified the specific interactions between a cell surface albumin-docking protein gp60 and caveolin-1 as well as components of the signaling machinery, heterotrimeric G protein (G(i))- and Src-family tyrosine kinase. Ligation of gp60 on the apical membrane induces the release of caveolae from the apical membrane and activation of endocytosis. The formed vesicles contain the gp60-bound albumin and also albumin and other solutes present in the fluid phase. Vesicles are transported in a polarized manner to the basolateral membrane, releasing their contents by exocytosis into the subendothelial space. The signaling functions of G(i) and Src are important in the release of caveolae from the plasma membrane. The Src-induced phosphorylation of caveolin-1 is crucial in regulating interactions of caveolin-1 with other components of the signaling machinery such as G(i), and key signaling entry of caveolae into the cytoplasm and endocytosis of albumin and other solutes. This review addresses the basis of transcytosis in endothelial cells, its central role as a determinant of endothelial barrier function, and signaling mechanisms involved in regulating fission of caveolae and trafficking of the formed vesicles from the luminal to abluminal side of the endothelial barrier.  相似文献   

18.
Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase   总被引:11,自引:0,他引:11  
Based on the observation that the Na(+)/K(+)-ATPase alpha subunit contains two conserved caveolin-binding motifs, we hypothesized that clustering of the Na(+)/K(+)-ATPase and its partners in caveolae facilitates ouabain-activated signal transduction. Glutathione S-transferase pull-down assay showed that the Na(+)/K(+)-ATPase bound to the N terminus of caveolin-1. Significantly, ouabain regulated the interaction in a time- and dose-dependent manner and stimulated tyrosine phosphorylation of caveolin-1 in LLC-PK1 cells. When added to the isolated membrane fractions, ouabain increased tyrosine phosphorylation of proteins from the isolated caveolae but not other membrane fractions. Consistently, ouabain induced the formation of a Na(+)/K(+)-ATPase-Src-caveolin complex in the isolated caveolae preparations as it did in live cells. Finally, depletion of either cholesterol by methyl beta-cyclodextrin or caveolin-1 by siRNA significantly reduced the caveolar Na(+)/K(+)-ATPase and Src. Concomitantly, cholesterol depletion abolished ouabain-induced recruitment of Src to the Na(+)/K(+)-ATPase signaling complex. Like depletion of caveolin-1, it also blocked the effect of ouabain on ERKs, which was restored after cholesterol repletion. Clearly, the caveolar Na(+)/K(+)-ATPase represents the signaling pool of the pump that interacts with Src and transmits the ouabain signals.  相似文献   

19.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

20.
Caveolae are the sites in the cell membrane responsible for concentrating an array of signaling molecules critical for cell function. Recent studies have begun to identify the functions of caveolin-1, the 22-kDa caveolar protein that oligomerizes and inserts into the cytoplasmic face of the plasma membrane. Caveolin-1 appears to regulate caveolar internalization by stabilizing caveolae at the plasma membrane rather than controlling the shape of the membrane invagination. Because caveolin-1 is a scaffolding protein, it has also been hypothesized to function as a "master regulator" of signaling molecules in caveolae. Deletion of the caveolin-1 gene in mice resulted in cardiac hypertrophy and lung fibrosis, indicating its importance in cardiac and lung development. In the endothelium, caveolin-1 regulates nitric oxide signaling by binding to and inhibiting endothelial nitric oxide synthase (eNOS). Increased cytosolic Ca2+ or activation of the kinase Akt leads to eNOS activation and its dissociation from caveolin-1. Caveolae have also been proposed as the vesicle carriers responsible for transcellular transport (transcytosis) in endothelial cells. Transcytosis, the primary means of albumin transport across continuous endothelia, occurs by fission of caveolae from the membrane. This event is regulated by tyrosine phosphorylation of caveolin-1 and dynamin. As Ca2+ influx channels and pumps are localized in caveolae, caveolin-1 is also an important determinant of Ca2+ signaling in endothelial cells. Many of these findings were presented in San Diego, CA, at the 2003 Experimental Biology symposium "Caveolin Regulation of Endothelial Function" and are reviewed in this summary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号