首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

2.
It is shown that the release of the slightly lysine-rich histones f2a2 and f2b by 0.4 M ammonium sulfate from conventionally isolated chromatin is diminished in comparison to the lysed nuclei. The change in extractability is further demonstrated by the application of ethidium bromide. At a molar input ratio of 0.09 (moles ethidium bromide/moles nucleotide) and 0.4 M ammonium sulfate the slightly lysine-rich histones are released from the chromatin to 70 - 80% if the lysed nuclei are used. At 0.1 M ammonium sulfate ethidium bromide effected also a release of 50 % of histone f1. Comparable effects could not be observed with chromatin prepared in a conventional way but instead a tendency towards loss of histone f3 in the presence of ethidium bromide was observed.  相似文献   

3.
Ethidium bromide was added to cultured human leukemic bone marrow and solid tumor cells to evaluate its inhibitory effect on mitotic chromosome condensation and its possible application to high-resolution banding analysis. In most experiments ethidium bromide treatment resulted in a high proportion of mitotic cells having elongated chromosomes, without remarkable reduction in either the mitotic index or quality of metaphase chromosomes. Optimal effect on chromosome length was obtained by adding 10 micrograms/ml of ethidium bromide during the final 2 hr of culture. Because of the simplicity and reproducibility of the technique involved, ethidium bromide can be used routinely to extend the length of chromosomes for fine-banding analysis of malignant cells.  相似文献   

4.
Ethidium bromide was added to cultured human leukemic bone marrow and solid tumor cells to evaluate its inhibitory effect on mitotic chromosome condensation and its possible application to high-resolution banding analysis. In most experiments ethidium bromide treatment resulted in a high proportion of mitotic cells having elongated chromosomes, without remarkable reduction in either the mitotic index or quality of metaphase chromosomes. Optimal effect on chromosome length was obtained by adding 10 μg/ml of ethidium bromide during the final 2 hr of culture. Because of the simplicity and reproducibility of the technique involved, ethidium bromide can be used routinely to extend the length of chromosomes for fine-banding analysis of malignant cells.  相似文献   

5.
Ethidium azide analogs (3-amino-8-azido-ethidium monoazide and ethidium diazide) have been developed as photosensitive probes in order to analyze directly the reversible in vivo interactions of ethidium bromide. Our preliminary observations [11], relating the mutagenic potential of the monoazide analog of ethidium, have been extended and refined, using the highly purified ethidium azide analogs [5]. A number of physical-chemical studies indicate that the monoazide analog interaction with nucleic acids, prior to photolysis, resembles remarkably the interaction of the parent ethidium (unpublished). It was anticipated, therefore, that competition by ethidium for the ethidium monoazide mutagenic sites in Salmonella TA1538 would be observed when these drugs were used in combination. Previous results in fact showed a decreased production of frameshift mutants when ethidium bromide was added to the ethidium monoazide in the Ames assay [1]. However, more extensive investigations, reported here, have shown that this apparent competition was the result of neglecting the toxic effects of ethidium monoazide and its enhanced toxocity in the presence of ethidium bromide. Conversely, an enhancement of the azide mutagenesis and toxicity for both the mono- and diazide analogs was seen when ethidium bromide was used in combination with these analogs.  相似文献   

6.
DNA topoisomerase activity can be rapidly assayed by measuring the change in ethidium bromide fluorescence intensity after treatment of closed duplex DNA with enzyme. The sensitivity of the fluorometric assay has been enhanced 3-fold by a 10-fold reduction in ethidium bromide concentration to 0.1 microgram/ml. The results of the fluorometric assays are in close agreement with agarose gel electrophoretic analyses of reacted DNA. A sensitive fluorometric method using 0.1 microgram/ml ethidium bromide has also been developed to determine the fraction of nicked and linear DNAs in a mixture containing closed duplex DNA by measuring the fluorescence intensities of ethidium-DNA complexes at pH 7.0 and pH 12.0. These methods make possible very rapid and sensitive measurements of DNA topoisomerase and endonuclease activities.  相似文献   

7.
By using the fluorescence enhancement of ethidium bromide bound to nuclei acid, a very rapid, simple and sensitive assay of DNA in the green alga Chlamydomonas has been devised. Total fluorescence (DNA + RNA) was determined by complex formation with ethidium bromide in a cell lysate made by mixing cell samples with lauroyl sarcosinate, EDTA and NaOH and incubating the mixture for 5 min at room temperature followed by neutralization. For determination of DNA the RNA was digested by incubating the cell sample in te alkaline lysis solution for 45 min at 60 degrees C followed by neutralization, and complex formation with ethidium bromide. Quenching of the fluorescence due to cellular pigments was corrected for using an internal DNA standard.  相似文献   

8.
The fluorescence yield and lifetime of ethidium bromide complexes with 1,4-alpha-glucan branching enzyme and its free nucleic acid component 2.5S RNA were measured. Both fluorescence parameters showed a 10-fold increase in comparison with those characteristics for the free dye. This increase allows to suggest the existence of double-stranded regions in 2.5S RNA both in the free as well as in the protein bound state. The coefficients of fluorescence polarization were also determined for ethidium bromide complexed with free and protein bound 2.5S RNA. They proved to be 13 and 18% respectively. No concentration depolarization was observed in both types of ethidium bromide and ethidium bromide--enzyme--RNA complexes. This proves that the double-stranded regions are rather short and that two ethidium bromide molecules can't be bound to each of them. The binding isotherms were measured for ethidium bromide absorbed on 2.5S RNA and on the holoenzyme. Their parameters napp and rmax are identical in the cases of free and protein bound 2,5S RNA (rmax = 0.046 +/- 0.001). However the binding constants of ethidium bromide complexes with free and protein bound 2.5S RNA differ significantly (Kapp = 2.2 X 10(6) M-1 for free 2.5S RNA and Kapp = 1.6 X 10(6) M-1 for the holoenzyme). The quantity of nucleotides involved in the two double-stranded regions accessible for ethidium binding is estimated to be about 28%. Increasing of Mg2+ ion concentration up to 10(-3) results in a decrease of ethidium bromide binding with double stranded regions. It may be due to a more compact tertiary structure of 2.5S RNA in the presence of Mg2+ in the free as well as in protein bound state.  相似文献   

9.
Multidrug resistance (MDR) in bacteria has been associated with efflux pumps that export structurally unrelated compounds and decrease cytoplasmic drug accumulation. To investigate MDR in mycobacteria, we studied the Mycobacterium smegmatis mutant mc(2)11, which is resistant to doxorubicin, tetracycline, rhodamine, ethidium bromide and the hydrophilic fluoroquinolones. A genomic library constructed from this mutant was used to select clones conferring resistance to doxorubicin. Surprisingly, the clone selected encodes the efflux pump LfrA, which has been reported to confer resistance to hydrophilic fluoroquinolones, ethidium bromide, rhodamine, and acriflavine. To define the contribution of LfrA to the innate mycobacterial drug resistance and to the MDR phenotype in mc(2)11, the lfrA gene was disrupted in both the mc(2)11 mutant and the mc(2)155 wild-type parent. LfrA disruption of the wild-type strain decreased resistance to ethidium bromide and acriflavine, and increased accumulation of ethidium bromide. However, disruption of lfrA gene results only in a 2-fold decrease in minimal inhibitory concentrations (MICs) for ciprofloxacin, doxorubicin, rhodamine, and accumulation of [(14)C]ciprofloxacin was unchanged. LfrA disruption of the MDR strain mc(2)11 produced a similar phenotype. Thus, LfrA contributes significantly to the intrinsic MICs of M. smegmatis for ethidium bromide and acriflavine, but not for ciprofloxacin, doxorubicin or rhodamine.  相似文献   

10.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

11.
The purpose of this study was to determine if there was an early increase in intracellular Ca++ which preceded generalized lysis of thymocytes during photodynamic permeabilization. A method was developed that facilitated the simultaneous measurement in real time of permeabilization of the thymocyte cell membrane to Ca++, Mn++, and ethidium bromide during photodynamic action. Quin-2 loaded cells were illuminated in the presence of erythrosin B and the change in the fluorescence emission of the calcium-quin-2 complex was used to determine how soon and to what extent intracellular Ca++ changed following illumination. In the presence of extracellular manganese, the same system was used to determine how soon the cells became permeable to Mn++ or quin-2. It was determined that the fluorescence emission of the ethidium bromide-DNA complex was strong enough to be measured in the presence of the calcium-quin-2 complex. This enabled the concomitant determination of the elapsed time following illumination before ethidium bromide entered the cell. It was established that increased intracellular Ca++ was an early event in the photodynamic permeabilization of thymocytes that preceded permeabilization of the cell membrane to ethidium bromide, Mn++ or quin-2, or lysis.  相似文献   

12.
Ethidium bromide-resistant cell strains were obtained by continuous selection of an adult rat liver-derived cell line (ARL6T) grown in the continuous presence of 200 ngl ml ethidium bromide. Comparison of resistant strains and parental (sensitive) cells was made for uptake and binding of ethidium bromide, visualized as fluorescent ethidium bromide-nucleic acid complexes. Although uptake of ethidium bromide was similar in parental and resistant cells, efflux kinetics were markedly different. Over a three-hour period, parental (sensitive) cells maintained fluorescence following a short ethidium bromide pulse (100 g/ ml ethidium bromide). In contrast, ethidium bromide-resistant cell lines eliminated photographically detectable fluorescent complexes within three hours following pulse exposure to ethidium bromide. The rapid elimination of ethidium bromide fluorescent complexes in all (5) resistant cell strains examined supports an efflux mechanism as contributing to the resistance of ethidium bromide cytotoxicity in these cells.Abbreviations EtBr ethidium bromide - HBSS Hanks' balanced salt solution  相似文献   

13.
Ethidium bromide: destruction and decontamination of solutions   总被引:9,自引:0,他引:9  
Ethidium bromide in water, TBE buffer, Mops buffer, and cesium chloride solution may be completely degraded by reaction with sodium nitrite and hypophosphorous acid. Only non-mutagenic reaction mixtures were produced. Destruction was greater than 99.8% in all cases; the limit of detection was 0.5 micrograms ethidium bromide per milliliter of solution. Ethidium bromide also may be removed completely from the above solutions by using Amberlite XAD-16 resin. The limit of detection was 0.05 micrograms ethidium bromide per milliliter of solution (0.27 micrograms/ml when cesium chloride solution was used).  相似文献   

14.
K V Sal'nikov 《Tsitologiia》1986,28(6):615-622
Stable mutants resistant to ethidium bromide in concentrations of 1 and 3 micrograms/ml have been selected in a single step in L cells. The frequency of spontaneously occurring ethidium bromide resistant clones after the exposure to 1 microgram/ml of the drug has been established as 5.10(-5). Resistant variants were induced following treatment with mutagen N-methyl-N-nitro-N-nitrosoguanidine. The resistant clones were shown to be resistant to higher concentration of the agent then which was used for selection. In multistep selection, a number of clones resistant to ethidium bromide in concentration up to 50 micrograms/ml was obtained. The alteration in the permeability of plasma membrane to the drug is the clue mechanism of the resistance.  相似文献   

15.
The interaction of ethidium bromide, a fluorescent dye, with Escherichia coli cells was studied. The envelope of intact cells was shown to be impermeable for ethidium bromide molecules. The dye penetrated however into E. coli spheroplasts. The barrier properties of the cell envelope against ethidium bromide were ruptured if the cells were treated with EDTA. The results suggest that the outer membrane serves as a principal barrier against penetration of ethidium bromide inside the cells while the cytoplasmic membrane of E. coli is permeable for the dye.  相似文献   

16.
When closed circular duplex DNAs are exposed to alkali in the presence of ethidium bromide, from 0 to 100% of the DNA can be recovered as the fully base-paired duplex (native) form upon neutralization of the solutions. The fraction of native DNA depends on the concentration of ethidium bromide, time of incubation, ionic strength and temperature of the solutions before neutralization as well as the molecular weight and superhelix density of the DNA. Limiting ethidium concentrations exist below and above which 0 and 100% of the DNA, respectively, is recovered as native material under a given set of incubation conditions regardless of the length of time of incubation before neutralization. The strong molecular weight dependence of the fraction of DNA recovered in the native form after a given time of pre-neutralization incubation at ethidium concentrations between the limiting values noted above allows larger DNAs to remain fully denatured upon neutralization while smaller DNAs in the same mixture are fully renatured. This permits the rapid fractionation of mixtures of closed duplex DNAs on the basis of molecular weight when a technique for the separation of denatured from fully base-paired DNA is applied to such mixtures. Such a separation has been demonstrated through the marked enrichment of plasmid cloning vector DNA containing cloned inserts in the fractions that remain denatured after neutralization of alkaline solutions of these DNAs containing ethidium bromide.  相似文献   

17.
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.  相似文献   

18.
Ethidium bromide was used to determine the success of cDNA synthesis reactions. Since ethidium bromide in agarose can be used to quantitate RNA and DNA, conditions under which the greater fluorescence of double-stranded DNA (dsDNA) is utilized were devised to assay dsDNA synthesis from mRNA. Ethidium bromide at 5 micrograms/ml in agarose allowed quantitative detection of cDNA in the range of 0.03 to 0.0015 microgram. Sodium dodecyl sulfate had an adverse effect on the measurement of cDNA. Subsequent cDNA analysis by alkaline gel electrophoresis and staining in 5 micrograms/ml ethidium bromide allowed accurate and rapid sizing of cDNA and required only 0.1-0.05 microgram cDNA.  相似文献   

19.
Ethidium bromide (23 nmol/mg of protein) was found to be a potent inhibitor of oxidative phosphorylation, as determined by loss of respiratory control through the inhibition of the ADP-induced state-3 rate of oxygen uptake. A time latency for complete loss of respiratory control was noted, after which 2,4-dinitrophenol (DNP) was ineffective in overcoming this inhibition. In the absence of EDTA, ethidium bromide produced an apparent uncoupling, as evidenced by an increase of state-4 rates of oxygen uptake and loss of respiratory control. As low as 8 nmol of ethidium bromide/mg of protein stimulated mitochondrial adenosine triphosphatase (ATPase) for 5 min. Two to three times this amount of ethidium bromide reduced the amount Pi released. Preincubation of mitochondria with ethidium bromide prevented subsequent release of Pi during incubation with ATP. Likewise, preincubation inhibited the DNP-activated ATPase. The uptake of low levels of [14C]ADP preincubated with ethidium bromide (14 nmol/mg of protein) and succinate or α-ketoglutarate could apparently be reversed, with loss of radioactivity beginning several minutes after addition of the radioactive nucleotide. Inhibition of oxidative phosphorylation by ethidium bromide may be due to modification of the adenine nucleotide transport system in mitochondria. The production of apparently swollen mitochondria treated in vitro with ethidium bromide and substrates necessary for oxidative phosphorylation, as seen in electron micrographs, further indicates that the compound is capable of acting directly upon mouse liver mitochondrial function and structure.  相似文献   

20.
The azide analog of [14C]ethidium bromide was mixed with lymphocytes and photolyzed with visible light. The distribution of azide in the chromatin fraction was found to be 55% in DNA, 28% in protein and 16% in RNA. Label in the DNA portion was found to be almost exclusively in the region digestible with micrococcal nuclease. The parent compound, ethidium bromide, competed with azide for binding sites, illustrating that the azide analog mimics the action of ethidium bromide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号