首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

2.
Ethidium bromide: destruction and decontamination of solutions   总被引:9,自引:0,他引:9  
Ethidium bromide in water, TBE buffer, Mops buffer, and cesium chloride solution may be completely degraded by reaction with sodium nitrite and hypophosphorous acid. Only non-mutagenic reaction mixtures were produced. Destruction was greater than 99.8% in all cases; the limit of detection was 0.5 micrograms ethidium bromide per milliliter of solution. Ethidium bromide also may be removed completely from the above solutions by using Amberlite XAD-16 resin. The limit of detection was 0.05 micrograms ethidium bromide per milliliter of solution (0.27 micrograms/ml when cesium chloride solution was used).  相似文献   

3.
Mitochondrial DNA synthesis in HeLa cells is inhibited by 0.2 μg ethidium bromide/ml whereas nuclear DNA synthesis is essentially unimpaired under the same conditions. The action of ehtidium bromide on mitochondrial DNA appears to be completed within 18 hours of exposure to the drug. Total cellular macromolecular synthesis under ethidium bromide is initially decreased and at later times slightly stimulated. Ethidium bromide pretreatment of HeLa cells did not significantly affect the multiplication of Herpes simplex virus as compared with that in control cells.  相似文献   

4.
DNA topoisomerase activity can be rapidly assayed by measuring the change in ethidium bromide fluorescence intensity after treatment of closed duplex DNA with enzyme. The sensitivity of the fluorometric assay has been enhanced 3-fold by a 10-fold reduction in ethidium bromide concentration to 0.1 microgram/ml. The results of the fluorometric assays are in close agreement with agarose gel electrophoretic analyses of reacted DNA. A sensitive fluorometric method using 0.1 microgram/ml ethidium bromide has also been developed to determine the fraction of nicked and linear DNAs in a mixture containing closed duplex DNA by measuring the fluorescence intensities of ethidium-DNA complexes at pH 7.0 and pH 12.0. These methods make possible very rapid and sensitive measurements of DNA topoisomerase and endonuclease activities.  相似文献   

5.
The effect of hyperthermic treatment on the binding of 59Fe-labeled bleomycin to DNA has been studied. Enhanced binding was observed at elevated temperatures. The influence of the DNA-intercalating agent, ethidium bromide, on bleomycin-DNA interaction was also studied and revealed a considerable decrease in this interaction at ethidium bromide levels below 1 microgram/ml. Ethidium bromide was observed to remove the enhanced bleomycin-DNA interaction recorded previously following incubation at hyperthermic temperatures. Synergistic action of bleomycin and hyperthermia on loss of clonogenic ability of HT29R cells is reported. Incubation of cells under hyperthermic conditions with bleomycin in the presence of ethidium bromide removes this synergism, producing a less than additive effect for the action of bleomycin and heat after ethidium bromide effects are taken into account.  相似文献   

6.
Ethidium bromide was added to cultured human leukemic bone marrow and solid tumor cells to evaluate its inhibitory effect on mitotic chromosome condensation and its possible application to high-resolution banding analysis. In most experiments ethidium bromide treatment resulted in a high proportion of mitotic cells having elongated chromosomes, without remarkable reduction in either the mitotic index or quality of metaphase chromosomes. Optimal effect on chromosome length was obtained by adding 10 micrograms/ml of ethidium bromide during the final 2 hr of culture. Because of the simplicity and reproducibility of the technique involved, ethidium bromide can be used routinely to extend the length of chromosomes for fine-banding analysis of malignant cells.  相似文献   

7.
A technique to quantitate small volumes of dilute solutions of different-sized DNA fragments has been developed. The detection limit was 0.7 micrograms/ml and the technique could be used even in the presence of diffusable substances, including those such as sodium dodecyl sulfate which affect surface tension and also exhibit fluorescence when stained with ethidium bromide and excited by ultraviolet light. The DNA was mixed with low-melting-point agarose and pipetted into preformed wells in an agarose plate, where it solidified. After diffusion of small molecules, the amount of DNA was estimated by comparing ethidium bromide-mediated fluorescence of samples with that of standards.  相似文献   

8.
K V Sal'nikov 《Tsitologiia》1986,28(6):615-622
Stable mutants resistant to ethidium bromide in concentrations of 1 and 3 micrograms/ml have been selected in a single step in L cells. The frequency of spontaneously occurring ethidium bromide resistant clones after the exposure to 1 microgram/ml of the drug has been established as 5.10(-5). Resistant variants were induced following treatment with mutagen N-methyl-N-nitro-N-nitrosoguanidine. The resistant clones were shown to be resistant to higher concentration of the agent then which was used for selection. In multistep selection, a number of clones resistant to ethidium bromide in concentration up to 50 micrograms/ml was obtained. The alteration in the permeability of plasma membrane to the drug is the clue mechanism of the resistance.  相似文献   

9.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

10.
We have developed a rapid electrophoretic technique for performing ethidium bromide dye titrations in cylindrical 0.7% agarose gels. The technique was used to analyze the extent of supercoiling in circular covalently closed SV40, Co1E1, and pSC101 DNA. We have estimated the superhelical densities of SV40, Co1E1, and pSC101 DNA to be ?0.050, ?0.078, and ?0.085 respectively. The results obtained for native SV40 DNA correlate well with previously published values for the superhelical density of this DNA when these values are corrected to reflect a 26° duplex unwinding angle for ethidium bromide. Ethidium bromide concentrations sufficient to partially relax a supercoiled DNA allow the DNA to be resolved into a series of discrete bands in agarose gels. The distribution of bands represents a natural heterogeneity in the superhelical densities of the DNA molecules in the population.  相似文献   

11.
Ethidium bromide-resistant cell strains were obtained by continuous selection of an adult rat liver-derived cell line (ARL6T) grown in the continuous presence of 200 ngl ml ethidium bromide. Comparison of resistant strains and parental (sensitive) cells was made for uptake and binding of ethidium bromide, visualized as fluorescent ethidium bromide-nucleic acid complexes. Although uptake of ethidium bromide was similar in parental and resistant cells, efflux kinetics were markedly different. Over a three-hour period, parental (sensitive) cells maintained fluorescence following a short ethidium bromide pulse (100 g/ ml ethidium bromide). In contrast, ethidium bromide-resistant cell lines eliminated photographically detectable fluorescent complexes within three hours following pulse exposure to ethidium bromide. The rapid elimination of ethidium bromide fluorescent complexes in all (5) resistant cell strains examined supports an efflux mechanism as contributing to the resistance of ethidium bromide cytotoxicity in these cells.Abbreviations EtBr ethidium bromide - HBSS Hanks' balanced salt solution  相似文献   

12.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

13.
The orientation of DNA fragments in the agarose gels   总被引:1,自引:0,他引:1  
A microscopic method of measuring the orientation of nucleic acids in the agarose gels is described. A nucleic acid undergoing electrophoresis is stained with the dye ethidium bromide and is viewed under high magnification with a polarization microscope. A high-numerical-aperture microscope objective is used to illuminate and to collect the fluorescence signal, and therefore the orientation of the minute quantities of nucleic-acid can be measured: in a typical experiment we can detect the orientation of one-tenth of a picogram (10(13)g) of DNA. Polarization properties of the fluorescent light emitted by the separate bands corresponding to different molecular weights of the DNA are examined. A linear dichroism equation relates the measured fluorescence to the mean orientation of the absorption dipole of the ethidium bromide (and therefore DNA) and to the extent to which it is disorganized. As an example, we measured the orientation of phi X174 DNA RF/HaeIII fragments undergoing electrophoresis in a field of 10 V/cm. Ethidium bromide bound to the fragments with an angle of the absorption dipole largely perpendicular to the direction of the electrophoretic current. The dichroism declined as the molecular weight of the fragments decreased which is interpreted as an increase in the degree of disorder for shorter DNA.  相似文献   

14.
Ethidium bromide, pentamidine isethionate, and MGBG [methylglyoxal-bis (guanylhydrazone)] inhibited the uptake of radioactive putrescine by leishmanial (Leishmania spp.; Leishmania tropica major; Leishmania mexicana; Leishmania donovani) promastigotes and interfered with their polyamine synthesis. Inhibition was apparent as early as 1 hr after adding these drugs to the parasites at growth-inhibiting concentrations. Ethidium bromide also inhibited the incorporation of radioactive uracil into leishmanial RNA at growth-inhibiting concentrations, while DNA synthesis was inhibited by ethidium bromide at high concentrations after a lag period. MGBG inhibited the synthesis of leishmanial DNA and RNA at growth-inhibiting concentrations.  相似文献   

15.
In order to ascertain the identity of the DNA-dependent DNA polymerase responsible for the observed DNA synthesis in nuclei isolated from baby-hamster kidney (BHK-21/C13) cells a comparative study was carried out on the effects of some drugs, reported to influence DNA synthesis, on DNA synthesis catalysed by these nuclei and by partially purified DNA polymerase-alpha and -beta. In all cases DNA synthesis by isolated nuclei and polymerase-alpha was inhibited to similar extents by N-ethylmaleimide, p-hydroxymercuribenzoate, novobiocin, heparin and phosphonoacetic acid; polymerase-beta was much less affected by these compounds. Ethidium bromide inhibited all DNA synthesis to similar extents, although at low concentrations (about 2 microgram/ml) synthesis in isolated nuclei was stimulated. The results are discussed in relation to the proposal that DNA polymerase-alpha catalyses the covalent extension of Okazaki fragments that these nuclei carry out in vitro.  相似文献   

16.
Ethidium bromide was added to cultured human leukemic bone marrow and solid tumor cells to evaluate its inhibitory effect on mitotic chromosome condensation and its possible application to high-resolution banding analysis. In most experiments ethidium bromide treatment resulted in a high proportion of mitotic cells having elongated chromosomes, without remarkable reduction in either the mitotic index or quality of metaphase chromosomes. Optimal effect on chromosome length was obtained by adding 10 μg/ml of ethidium bromide during the final 2 hr of culture. Because of the simplicity and reproducibility of the technique involved, ethidium bromide can be used routinely to extend the length of chromosomes for fine-banding analysis of malignant cells.  相似文献   

17.
Ethidium bromide can be rapidly destroyed in aqueous solutions or in isoamyl alcohol by ozonolysis in the presence of H2O2 to give a mixture of organic acids. In a variety of buffers commonly used in recombinant DNA technology destruction of ethidium bromide was more than 99.9%. The yellow reaction mixture after ozonolysis was shown to be nonmutagenic. This method may be used in laboratories for the disposal of ethidium bromide wastes.  相似文献   

18.
The synthesis, proof of structure, and the absorption and fluorescence properties of two new unsymmetrical cyanine dyes, thiazole orange dimer (TOTO; 1,1'-(4,4,7,7-tetramethyl-4,7- diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiaz ole)-2- methylidene]-quinolinium tetraiodide) and oxazole yellow dimer (YOYO; an analogue of TOTO with a benzo-1,3-oxazole in place of the benzo-1,3-thiazole) are reported. TOTO and YOYO are virtually non-fluorescent in solution, but form highly fluorescent complexes with double-stranded DNA (dsDNA), up to a maximum dye to DNA bp ratio of 1:4, with greater than 1000-fold fluorescence enhancement. The dsDNA-TOTO (lambda max 513 nm; lambda maxF 532 nm) and dsDNA-YOYO (lambda max 489 nm; lambda maxF 509 nm) complexes are completely stable to electrophoresis on agarose and acrylamide gels. Mixtures of restriction fragments pre-labeled with ethidium dimer (EthD; lambda maxF 616 nm) and those pre-labeled with either TOTO or YOYO were separated by electrophoresis. Laser excitation at 488 nm and simultaneous confocal fluorescence detection at 620-750 nm (dsDNA-EthD emission) and 500-565 nm (dsDNA-TOTO or dsDNA-YOYO emission) allowed sensitive detection, quantitation, and accurate sizing of restriction fragments ranging from 600 to 24,000 bp. The limit of detection of dsDNA-TOTO and YOYO complexes with a laser-excited confocal fluorescence gel scanner for a band 5-mm wide on a 1-mm thick agarose gel was 4 picograms, about 500-fold lower than attainable by conventional staining with ethidium bromide.  相似文献   

19.
Ethidium bromide, a new type of inhibitor of energy transduction in oxidative phosphorylation, inhibited ATP synthesis in intact mitochondria but not in submitochondrial particles, the latter being inside-out relative to the membranes of intact mitochondria. Ethidium bromide incorporated inside the submitochondrial particles inhibited ATP synthesis in the particles. The decrease of the membrane potential by valinomycin (plus KCl) inhibited only slightly the energy-dependent binding of ethidium bromide to the mitochondria. The present results show clearly that ethidium bromide inhibited energy transduction in oxidative phosphorylation by acting on the outer side (C-side) of the inner mitochondrial membrane, perhaps by neutralizing negative charges created on the surface of the C-side, and that it had no inhibitory activity on the inner side (M-side) of the membrane. Th present results show also that the energy-dependent binding of ethidium is not due to electrophoretic transport down the membrane potential; ethidium may bind to negative charges on the surface of the C-side. The present study suggest that an anisotropic distribution of electric charge in the inner mitochondrial membrane is an intermediary high energy state of oxidatvie phosphorylation.  相似文献   

20.
Adenovirus DNA replication is inhibited by aphidicolin but the inhibition clearly has different parameters than the inhibition of purified DNA polymerase alpha. In adenovirus infected Hela cells, 10 micrograms/ml of aphidicolin reduced viral DNA synthesis by 80%. Cellular DNA synthesis was inhibited by 97% at 0.1 microgram/ml. 10 micrograms/ml of drug had no effect on virus yield or late protein synthesis though higher concentrations of drug (50 micrograms/ml) caused an abrupt cessation of late protein synthesis and 100 micrograms/ml reduced virus yield by 3 logs. Concentrations of the drug from 0.5 microgram/ml to 10 micrograms/ml were found to dramatically slow the rate of DNA chain elongation in vitro but not stop it completely, so that over a long period of time net incorporation was reduced only slightly compared to the control. 50 micrograms/ml or 100 micrograms/ml of drug completely inhibited incorporation in vitro. Initiation of viral DNA replication - covalent attachment of dCMP to the preterminal protein - occurs in vitro. This reaction was found to be insensitive to inhibition by aphidicolin. We thus conclude that aphidicolin exerts its effect on adenovirus DNA chain elongation, but not on the primary initiation event of protein priming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号