首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution flow cytometry of nuclear DNA in higher plants   总被引:6,自引:0,他引:6  
I. Ulrich  W. Ulrich 《Protoplasma》1991,165(1-3):212-215
Summary High-resolution flow cytometry of nuclear DNA in higher plants has been performed from chopped plant tissues and plant protoplasts. A preparation and staining procedure with the DNA specific fluorochrome DAPI, successfully employed for precise flow cytometric DNA analysis of animal and human cells has been used in a slightly modified manner for the DNA analysis of plant cell material. High-resolution DNA histograms coefficients of variation about 1–1.5% have been obtained routinely from plant species with different DNA content. Staining of nuclei with DAPI in combination with the protein fluorochrome sulforhodamine 101 allows bi-parametric analysis of nuclear DNA and protein. The described simple and precise method might be very promising for the analysis of DNA in basic and applied cytogenetic investigations of plant cell research.Abbreviations CV coefficient of variation - DAPI 4,6-diamidino-2-phenylindole - SR 101 sulforhodamine 101  相似文献   

2.
BACKGROUND: Different plant species vary as to the ratio of nucleotide base pairs of genomic DNA. A correlation between genome size and base pair ratio has been claimed. Base composition can be analyzed by base-specific dyes. METHODS: Genome size is determined by flow cytometry of suspensions of nuclei stained by the base independent dye, PI. For estimation of the AT frequency, the AT-specific dyes 4,6-diamidino-2-phenylindole, dihydrochloride (DAPI) and Hoechst 33342 (HO) were used. We define a dye factor (DF) as the ratio of the two estimates (peak ratios) of nuclear fluorescence intensities of sample relative to reference plant nuclei using a given dye and an intercalating fluorochrome. RESULTS: No significant correlation between genome size and the DF for DAPI was found when 54 plant species were investigated. However, similarities within and differences among the plant families were shown. The comparison of DAPI and HO DFs gave no consistent differences as would be predicted from the model of different binding site length of dyes. This result may be explained by the nonrandom distribution of base pairs. CONCLUSIONS: There is no general correlation between genome size and AT/GC ratio in higher plants. Similar AT/GC ratios within a plant family result from the general similarity of the DNA sequences within a family. The fluorescence of base-specific dyes is influenced by the nonrandom distribution of bases in the DNA molecule.  相似文献   

3.
We applied the alkaline version of the single-cell gel electrophoresis (comet) assay to roots and leaves of tobacco (Nicotiana tabacum var. xanthi) seedlings or isolated leaf nuclei treated with: (1) the alkylating agent ethyl methanesulphonate, (2) necrotic heat treatments at 50 degrees C, and (3) DNase-I. All three treatments induced a dose-dependent increase in DNA migration, expressed as percentage of tail DNA. A comparison of the fluorochrome DNA dyes ethidium bromide, DAPI and YOYO-1 demonstrated that for the alkaline version of the comet assay in plants, the commonly used fluorescent dye ethidium bromide can be used with the same efficiency as DAPI or YOYO-1.  相似文献   

4.
Plant DNA flow cytometry and estimation of nuclear genome size   总被引:25,自引:0,他引:25  
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.  相似文献   

5.
The Feulgen reaction and the staining of preparations with two DNA-specific fluorochromes, Hoechst 33258 and 4',6-diamidino-2-fenilindol (DAPI), were used to study the preservation of DNA in the fossilized leaf and fruit tissues of the Lower Eocene Myrtaceae, Paramyrtacicarpus plurilocularis and Paramyrtaciphyllum agapovii collected in Yakutia (Siberia, Russia). It was shown that chromatin structures of the fossilized plants form stable red-purple complexes with the Schiff's fuchsin sulphuric acid reagent in situ . This coloration is specific for DNA, in particular, for the deoxyribose residues. It means that the cell nuclei of these 53–55 Myr old plants preserve a part of the deoxyribose backbone of DNA molecules. On the other hand, there was no, or only a very weak, staining of the cell nucleus with fluorochromes DAPI or Hoechst 33258, which specifically bind to the double-stranded DNA and do not bind to either the single-stranded DNA or RNA molecules. The stainability of fossil plant cell preparations with alcian blue shows that there are also polysaccharides containing carboxyl groups in the cell walls of fossilized leaf and fruit tissues of the Lower Eocene Myrtaceae.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 315–321.  相似文献   

6.
Diploid nuclei from stem, mesocotyl, nodal root and root tiptissue of two maize hybrids were examined with respect to theirDNA content. The nuclei were isolated and stained with DAPIand passed through a flow cytometer-cell sorter. The titrationcurve for each tissue was determined. Significant variationwas observed among nuclei of different tissue types. Stem androot tips had the highest diploid nuclear DNA amounts while2-week-old mesocotyl had the lowest diploid nuclear DNA amount.These results provide evidence that during plant developmentand differentiation, the amount of DNA within a diploid nucleuschanges through loss of specific DNA sequences. This study alsodemonstrates the sensitivity of flow cytometry in detectingsmall intraplant variation in nuclear DNA. Key words: Flow cytometry, fluorochrome DAPI, DNA content, tissue differentiation, plant development  相似文献   

7.
The fluorescent dye 4′-6-Diamidino-2-phenylindole (DAPI) is frequently used in fluorescence microscopy as a chromosome and nuclear stain because of its high specificity for DNA. Normally, DAPI bound to DNA is maximally excited by ultraviolet (UV) light at 358 nm, and emits maximally in the blue range, at 461 nm. Hoechst dyes 33258 and 33342 have similar excitation and emission spectra and are also used to stain nuclei and chromosomes. It has been reported that exposure to UV can convert DAPI and Hoechst dyes to forms that are excited by blue light and emit green fluorescence, potentially confusing the interpretation of experiments that use more than one fluorochrome. The work reported here shows that these dyes can also be converted to forms that are excited by green light and emit red fluorescence. This was observed both in whole tissues and in mitotic chromosome spreads, and could be seen with less than 10-s exposure to UV. In most cases, the red form of fluorescence was more intense than the green form. Therefore, appropriate care should be exercised when examining tissues, capturing images, or interpreting images in experiments that use these dyes in combination with other fluorochromes.  相似文献   

8.
The morphological and ultrastructural changes that occur during preparation of porcine, bovine, and murine spermatozoa for flow cytometric quantification of the relative DNA content of the X- and Y-chromosome-bearing sperm populations were examined. Ejaculated spermatozoa from the boar and bull were washed using a series of dimethyl sulfoxide (DMSO) solutions prior to fixation, whereas the epididymal mouse spermatozoa were washed only in phosphate-buffered saline (PBS). Spermatozoa from all three species were then fixed in ethanol and processed for fluorochrome staining by a treatment regimen consisting of sulfhydryl reduction and proteolysis. The processed sperm nuclei were stained for DNA with the fluorochrome, 4′-6-diamidino-2-phenylindole (DAPI) before quantification by flow cytometry. Scanning and transmission electron micrographs of sperm heads taken at various steps of the preparation and staining procedures show 1) that the rigorous washing procedure disrupted the plasma and outer acrosomal membranes, 2) that ethanol fixation resulted in removal of the outer membranes and disintegration of the nuclear envelope, and 3) that thiol and proteolysis treatment removed the remaining cellular organelles including the tail and rapidly induced partial decondensation of the tightly packed chromatin. Sequential micrographs showed that the nuclear matrix of all three species increased in thickness about twofold during the preparation and staining. Consequently, the harsh procedures currently used for quantitative staining of DNA for high-resolution flow cytometric analyses destroy most cellular organelles and thereby prevent simultaneous characterization of DNA content and other sperm cell constituents.  相似文献   

9.
Summary Lincoln and Frisson varieties of endomycorrhiza-forming pea plants and isogenic mycorrhiza-resistant Frisson mutant (P2) plants were inoculated withGlomus mosseae. Nuclei released from inoculated and non-inoculated (control) roots were analysed for chromatin structure and activity using flow cytometric techniques. Chromatin accessibility to the specific DNA fluorochrome DAPI at saturating and non-saturating concentrations was measured. DNA fluorescence of nuclei of mycorrhizal Lincoln and wild genotype Frisson plants was significantly increased, compared to the controls, at saturating and, more strongly, at non-saturating DAPI concentrations. In contrast, the nuclei of inoculated P2 mutant roots showed a much lower increase in fluorescence, compared to uninoculated controls. Nuclei released from mycorrhiza-infected Lincoln roots were more sensitive to DNase I than those of uninfected ones. These results indicate a dramatic increase in that portion of the genome which can be transcribed in response to AM infection.Abbreviations AM arbuscular mycorrhizas - CRBCs chicken red blood cells - CV coefficient of variation - DAPI 4 6-diamidino-2-phenylindole - DNase I deoxyribonuclease I - EDTA ethylenediamine tetraacetic acid - FCM flow cytometry - TMN Tris MgCl2 NaCl buffer  相似文献   

10.
Flow cytometry was used to compare 14 potential reference standards for plant DNA content determination. Both chicken and plant internal standards were used, as were propidium iodide (PI) and 4'-6-diamidino-2-phenylindole (DAPI) as fluorochromes. Means and standard errors of the means are presented for the 14 potential reference standards, and the means are compared to those obtained by Feulgen densitometry. Five species are recommended as an initial set of international standards for future plant DNA content determinations: Sorghum bicolor cv. Pioneer 8695 (2C = 1.74 pg), Pisum sativum cv. Minerva Maple (2C = 9.56 pg), Hordeum vulgare cv. Sultan (2C = 11.12 pg), Vicia faba (2C = 26.66 pg), and Allium cepa cv. Ailsa Craig (2C = 33.55 pg). It is recommended that the reference standard of choice be one with 2C and 4C nuclear DNA content peaks similar to, but not overlapping, the 2C and 4C peaks of the target species. We recommend PI as the fluorochrome of choice for flow cytometric determination of plant DNA content. DAPI should be used only if the estimated DNA value is corroborated by using a second stain that has no bias for AT- or GC-rich sequences within genomes.  相似文献   

11.
Summary Chromosomes from rat kangaroo (PTK) and chinese hamster (CHV 79) cells have been prepared for quantitative flow-cytometric analysis. The preparation time was optimized down to 30 (PTK) and 40 min (CHV 79). DAPI was used as a AT-sensitive fluorescent dye to stain for monoparameter DNA measurements. Simultaneous two-parameter DNA-protein analysis was carried out with DAPI and SR 101 (as a general protein fluorochrome) in combination. The karyotype of the PTK cells with 13 (14) chromosomes was separated into 10 DNA peaks. The X-chromosome bearing the nucleolus organizer region generates a distinct peak. The karyotype of the CHV 79 cells with 22 chromosomes was separated into 15 peaks. The DNA profile obtained indicates a geometric grading of the chromosomal amount of AT components in the karyotype of this particular cell line. The simultaneous DNA-protein analysis performed show enough sensitivity of the instrument utilizing high power UV excitation illumination to discriminate the two color emission consisting of blue (DAPI) and red (SR 101) fluorescence. Color overlapping could be completely avoided. Additionally, the quality (number, location, and resolution of peaks) of the DNA distribution was not influenced by the simultaneous application of a second fluorescent stain. Fluorescence activated electronic sorting applied on chromosomal fluorescence distributions providing purified fractions of chromosomes for subsequent biochemical and biological determinations is discussed.  相似文献   

12.
The use of the DNA-specific fluorochrome DAPI has been extended to stage assessment of fresh pollen in wheat and maize. Membrane permeabilization by Triton X-100 incorporated in the staining solution allows access of the fluorochrome to nuclear DNA. At all stages of gametophytic development, the nuclei can be sharply visualized. Starch does not interfere with the fluorochrome so that it is possible to study the second pollen grain mitosis and sperm differentiation. With its rapidity and reliability, this technique represents an efficient tool for routine staging or investigation of the nuclear status of the pollen grains.  相似文献   

13.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1995,188(3-4):245-251
Summary DNA containing structures (cellular, chloroplast and mitochondrial nuclei) were stained with the fluorochrome DAPI. Fluorescence intensity, as a measure of DNA content, was estimated during the mitotic cycle in synchronized populations of the chlorococcal alga,Scenedesmus quadricauda. In cells yielding eight daughter cells, three consecutive steps in chloroplast DNA increase occurred over one mitotic cycle. The first step was performed shortly after releasing the daughter cells, the second and third steps occurred consecutively during the first half of the mitotic cycle. Commitment to chloroplast DNA replication was chronologically separated from commitment to division of chloroplast nuclei, revealing that these two chloroplast reproductive steps were under different control mechanisms. The replication of chloroplast DNA occurred at a different time to that of cell-nuclear DNA. The coordination of chloroplast reproductive processes and those in the nucleocytoplasmic compartment were governed by the mutual trophic and metabolic dependency of these compartments rather than by any direct or feedback control controlled by either of them.Abbreviations DAPI 46-diamidino-2-phenylindole - ptDNA DNA in chloroplast nuclei - nucDNA DNA in cell nuclei  相似文献   

14.
The use of the DNA-specific fluorochrome DAPI has been extended to stage assessment of fresh pollen in wheat and maize. Membrane permeabilization by Triton X-100 incorporated in the staining solution allows access of the fluorochrome to nuclear DNA. At all stages of gametophytic development, the nuclei can be sharply visualized. Starch does not interfere with the fluorochrome so that it is possible to study the second pollen grain mitosis and sperm differentiation. With its rapidity and reliability, this technique represents an efficient tool for routine staging or investigation of the nuclear status of the pollen grains  相似文献   

15.
Background and Aims Flow cytometry (FCM) is extensivelyused to estimate DNA ploidy and genome size in plants. In orderto determine nuclear DNA content, nuclei in suspension are stainedby a DNA-specific fluorochrome and fluorescence emission isquantified. Recent studies have shown that cytosolic compoundsmay interfere with binding of fluorochromes to DNA, leadingto flawed data. Tannic acid, a common phenolic compound, maybe responsible for some of the stoichiometric errors, especiallyin woody plants. In this study, the effect of tannic acid onestimation of nuclear DNA content was evaluated in Pisum sativumand Zea mays, which were chosen as model species. • Methods Nuclear suspensions were prepared from P. sativumleaf tissue using four different lysis buffers (Galbraith's,LB01, Otto's and Tris.MgCl2). The suspensions were treated withtannic acid (TA) at 13 different initial concentrations rangingfrom 0·25 to 3·50 mg mL–1. After propidiumiodide (PI) staining, samples were analysed using FCM. In additionto the measurement of nuclei fluorescence, light scatter propertieswere assessed. Subsequently, a single TA concentration was chosenfor each buffer and the effect of incubation time was assessed.Similar analyses were performed on liquid suspensions of P.sativum and Z. mays nuclei that were isolated, treated and analysedsimultaneously. FCM analyses were accompanied by microscopicobservations of nuclei suspensions. • Key Results TA affected PI fluorescence and light scatterproperties of plant nuclei, regardless of the isolation bufferused. The least pronounced effects of TA were observed in Tris.MgCl2buffer. Samples obtained using Galbraith's and LB01 bufferswere the most affected by this compound. A newly described ‘tannicacid effect’ occurred immediately after the addition ofthe compound. With the exception of Otto's buffer, nuclei ofP. sativum and Z. mays were affected differently, with pea nucleiexhibiting a greater decrease in fluorescence intensity. • Conclusions A negative effect of a secondary metabolite,TA, on estimation of nuclear DNA content is described and recommendationsfor minimizing the effect of cytosolic compounds are presented.Alteration in light scattering properties of isolated nucleican be used as an indicator of the presence of TA, which maycause stoichiometric errors in nuclei staining using a DNA intercalator,PI.  相似文献   

16.
DNA content of the nucleus in the placoderm desmid, Closterium ehrenbergii Meneghini was measured throughout the life cycle by epifluorescence microspectrophotometry after DNA specific dye [4′,6-diamidino-2-phenylindol (DAPI)] staining. Postulating a mean DNA content of gamete nuclei as 1C, the nucleus of a newly divided vegetative cell was 2C. Most vegetative cells in the stage of exponential growth had a DNA content from 2C to 4C, while most in stationary phase, with the highest frequency of zygote formation, were 2C. They became pre-gametes (2C) upon mixing two heterothallic strains. Four gametes were made by a DNA reduction division of each pre-gamete cell. Therefore, there was a nonmeiotic DNA reduction stage by one half. During germination, the zygote underwent meiosis to produce two gones, each of which contained one surviving nucleus (large nucleus) and one degenerating nucleus (small nucleus). The DNA content of these four nuclei was 1C basically. The DNA of the surviving nucleus duplicated to 2C and further quadruplicated to 4C without cell or nuclear division. These two 4C gones had different cell morphology from ordinary vegetative cells. After the first cell division following meiosis, each gone produced two vegetative cells in which the DNA content became 2C to 4C again.  相似文献   

17.
BACKGROUND: Nuclear DNA content in plants is commonly estimated using flow cytometry (FCM). Plant material suitable for FCM measurement should contain the majority of its cells arrested in the G0/G1 phase of the cell cycle. Usually young, rapidly growing leaves are used for analysis. However, in some cases seeds would be more convenient because they can be easily transported and analyzed without the delays and additional costs required to raise seedlings. Using seeds would be particularly suitable for species that contain leaf cytosol compounds affecting fluorochrome accessibility to the DNA. Therefore, the usefulness of seeds or their specific tissues for FCM genome size estimation was investigated, and the results are presented here. METHODS: The genome size of six plant species was determined by FCM using intercalating fluorochrome propidium iodide for staining isolated nuclei. Young leaves and different seed tissues were used as experimental material. Pisum sativum cv. Set (2C = 9.11 pg) was used as an internal standard. For isolation of nuclei from species containing compounds that interfere with propidium iodide intercalation and/or fluorescence, buffers were used supplemented with reductants. RESULTS: For Anethum graveolens, Beta vulgaris, and Zea mays, cytometrically estimated genome size was the same in seeds and leaves. For Helianthus annuus, different values for DNA amounts in seeds and in leaves were obtained when using all but one of four nuclei isolation buffers. For Brassica napus var. oleifera, none of the applied nuclei isolation buffers eliminated differences in genome size determined in the seeds and leaves. CONCLUSIONS: The genome size of species that do not contain compounds that influence fluorochrome accessibility appears to be the same when estimated using specific seed tissues and young leaves. Seeds can be more suitable than leaves, especially for species containing staining inhibitors in the leaf cytosol. Thus, use of seeds for FCM nuclear DNA content estimation is recommended, although for some species a specific seed tissue (usually the radicle) should be used. Protocols for preparation of samples from endospermic and endospermless seeds have been developed.  相似文献   

18.
目的:探讨石蜡组织荧光原位杂交(FISH)技术中关键实验步骤的最佳条件,以期提高石蜡切片FISH阳性细胞检出率和实验成功率。方法:在前期标本处理方面,进行双蒸水、0.5×SSC溶液、0.1%硫代亚硫酸钠溶液煮沸对比;在蛋白酶消化方面,设置胃蛋白酶和蛋白酶K两种消化方法,并在37℃条件下设置时间的梯度变化,比较其消化效果;对石蜡切片的变性设置温度梯度,比较杂交检出率;比较DAPI复染时不同浓度对单色、双色FISH结果的影响;应用抗淬灭剂后不同保存时间的对比。结果:采用0.5×SSC溶液煮沸15min,用200μg/mL蛋白酶K在37℃、6~10min条件下消化,可以取得较好的FISH效果;变性温度为81℃时检出率更高,DAPI复染浓度为1000ng/mL时针对单色FISH较合适,而浓度为500、150ng/mL时针对双色/多色FISH有较好的效果。结论:FISH条件经过对比得到优化,对石蜡组织FISH实验具有一定的指导意义。  相似文献   

19.
Background and Aims: After the initial boom in the application of flow cytometryin plant sciences in the late 1980s and early 1990s, which wasaccompanied by development of many nuclear isolation buffers,only a few efforts were made to develop new buffer formulas.In this work, recent data on the performance of nuclear isolationbuffers are utilized in order to develop new buffers, generalpurpose buffer (GPB) and woody plant buffer (WPB), for plantDNA flow cytometry. Methods: GPB and WPB were used to prepare samples for flow cytometricanalysis of nuclear DNA content in a set of 37 plant speciesthat included herbaceous and woody taxa with leaf tissues differingin structure and chemical composition. The following parametersof isolated nuclei were assessed: forward and side light scatter,propidium iodide fluorescence, coefficient of variation of DNApeaks, quantity of debris background, and the number of particlesreleased from sample tissue. The nuclear genome size of 30 selectedspecies was also estimated using the buffer that performed betterfor a given species. Key Results: In unproblematic species, the use of both buffers resulted inhigh quality samples. The analysis of samples obtained withGPB usually resulted in histograms of DNA content with higheror similar resolution than those prepared with the WPB. In morerecalcitrant tissues, such as those from woody plants, WPB performedbetter and GPB failed to provide acceptable results in somecases. Improved resolution of DNA content histograms in comparisonwith previously published buffers was achieved in most of thespecies analysed. Conclusions: WPB is a reliable buffer which is also suitable for the analysisof problematic tissues/species. Although GPB failed with someplant species, it provided high-quality DNA histograms in speciesfrom which nuclear suspensions are easy to prepare. The resultsindicate that even with a broad range of species, either GPBor WPB is suitable for preparation of high-quality suspensionsof intact nuclei suitable for DNA flow cytometry.  相似文献   

20.
A one-step procedure for the preparation of nuclei for flow microfluorometric DNA analysis is described. The membranes of the cells were lysed by the non-ionic detergent Nonidet P40. Single-cell suspensions, and specimens of solid tissues obtained with fine-needle biopsy, could be prepared equally well as the nuclei of solid tissue cells were released separately. Lysis was performed in the staining solution containing either ethidium bromide or propidium iodide. Fluorescence due to fluorochrome binding to RNA, was abolished instantaneously by the presence of RNA-se, and fluorochrome binding to secondary binding sites in DNA was inhibited with NaCl. The preparation time was 10 min and the samples were stable for a minimum of 12 h. With the basic version of the method, usable, but not always optimal, results were obtained in all the cell types tested: four different mouse ascites tumors, leucocytes, bone-marrow, liver cells, human lymphomas, human carcinomas of the breast and lung, mouse mammary carcinoma and solid JB-1 tumor. The method was further optimized for the JB-1 ascites tumour. The resulting two modified techniques are described. Differences in the staining of leucocytes with the analogues ethidium bromide and propidium iodide were demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号