首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Annual variations in the abundance ofAlternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors,Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency forAlternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves forAlternaria spore counts are given in relation to temperatures during the period studied.  相似文献   

2.
Summary This paper reports about the occurence ofFusarium- andDidymella spores in the air of Essen/FRG. During the spore season 1990, the spore concentration was measured on several days with a volumetric pollen trap by hourly analysis. The calculated amount of spores per hour is compared to the data of a pluviometer and the values of the relative humidity during the same period.The occurence of both spore types in the air and high relative humidity (>80%) are correlated in a highly significant way (P<0.001). The dispersion of spores starts when rain begins or directly after the precipitation.Didymella reaches higher concentrations thanFusarium in the air (Maximum values:Didymella 30000 spores/m3,Fusarium only 800 spores/m3). During the emission of the spores the temperature varied between 10°C und 20°C degrees. Didymella andFusarium must be an important allergenic source in the outdoor area, because of their allergen-loaded biological aerosols. The question of providing well defined extracts ofDidymella exitialis is given to the pharmaceutical industry.  相似文献   

3.
A study of airborne fungal spore was carried out at nine locations in the southern part of the state of Enugu, Nigeria, from March 2005 to February 2006. The aim of the study was to ascertain the variations in selected fungal spore types at the sites owing to weather conditions. The variation in airborne fungal spores of 14 taxa was studied using modified Tauber pollen traps including Alternaria, Corynespora, Curvularia, Drechslera type, Endophragmiella, Botryodiplodia, Ganoderma, Gliomastrix, Nigrospora, Pithomyces, Spegazzinia, Sporidesmium, Tetraploa and Ustilago. The frequency of the spore types recorded showed considerable variation. The highest spore counts were recorded in July, June and October. The highest numbers of fungal spores were recorded during the rainy season (June–October) to early dry season (November–December). The peak of occurrence of most selected fungal spore types was July. The highest percentages of fungal spores were documented at the recording stations Mgbowo Junction, UNTH Ituku Ozalla and Oji River Express Junction. Spearman’s correlation analyses were performed for the monthly amounts of the fungal spore types and monthly meteorological factors. The numbers of Curvularia, Nigrospora and Sporidesmium was significantly correlated with relative humidity, while those of Endophragmiella, Pithomyces and Nigrospora were significantly correlated with temperature. A significant correlation was also found between the number of Nigrospora spores and light intensity and Sporidesmium spores and wind velocity. Relative humidity and temperature seem to be the most important weather conditions affecting the frequency of the selected spore types in the atmosphere.  相似文献   

4.
 Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens. Received: 14 October 1996 / Revised: 17 February 1997 / Accepted: 28 February 1997  相似文献   

5.
Temporal variation of airborne bracken (Pteridium aquilinum) spores concentration in Salamanca during 10 years from January 1998 to December 2007 were studied by using a Burkard spore trap, and correlations with some meteorological parameters were analyzed. The number of spores that were counted was very low, due probably to the distance between the spore trap and the main bracken populations which were located 70 km away from the city. Long-range transport caused by winds coming from the Second Quadrant (IIQ) is supposed to be responsible for the appearance of bracken spores in Salamanca. The season period from August to late October shows the most intense spore dispersal process, with an early morning distribution along the day. Years 2002 and 2007 with a low quantity of airborne spores were also characterized by low mean temperatures, always under 18°C from May to June. Daily spore concentration shows positive correlation with temperature and sun hours but negative with IVQ winds and with relative humidity. No correlation between daily spore concentration and rainfall was found. Also, a positive correlation between number of spores and IIQ winds was observed during the main spore season (MSS) and prepeak period (PRE).  相似文献   

6.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

7.
Yearly, seasonal and circadian variations in airborne urediniospore concentration of birch rust,Melampsoridium betulinum (Fries) Kleb., were studied in Turku, Oulu and Kevo during 1983–1988, using the Burkard spore trap. Variation among areas and the effects of weather parameters on spore concentration were also examined. The total number of spores was much higher in Oulu than at the other locations. The yearly variation was high at all locations. The urediniospore season usually started in August and peaked in September. Urediniospores showed clear circadian variation; a peak was observed in the afternoon. High wind speed significantly increased airborne urediniospore concentration; likewise temperature affected the concentration positively.  相似文献   

8.
Nicoleta Ianovici 《Grana》2017,56(6):424-435
The present aeromycological investigation was undertaken to study atmospheric fungal spores in Timi?oara (western Romania). This study was carried out using a Hirst type volumetric sampler. The study revealed the existence of a rich airborne mycoflora. The atmospheric fungal spores were classified and evaluated into three groups (‘major’, ‘minor’ and ‘sporadic’) depending upon their catch percentage in the air. Cladosporium/Fusarium/Leptosphaeria-group, Alternaria, Helminthosporium airborne fungal spores and airborne fungal fragments regularly recorded (frequency 100% of days). Cladosporium accounted for 81.09% of the outdoor fungal spores. The airborne fungal fragments have been identified as abundant in our geographic area. Spearman’s correlations were applied to meteorological parameters and airborne fungal spore concentrations. In addition, correlations were calculated between the fungal spore concentrations and the meteorological variables from the previous day. A total of eleven weather factors were selected for this investigation. Following Spearman’s correlations, I identified two patterns of behaviour: most of the airborne fungal spores prefer cloudiness, lower near-surface soil temperature, lower atmospheric pressure, higher relative humidity and precipitation (pattern A) while other spore concentrations favour increased sunshine, higher near-surface soil temperature and dry conditions (pattern B). The behaviour of some fungal spores during the warm season has proven unclear (pattern C). This study demonstrates the need for investigations throughout the year and the evaluation with complementary statistical methods, regarding the correct interpretation of airborne mycoflora relationships with meteorological parameters.  相似文献   

9.
Field-based experiments were conducted to evaluate the fate and infectivity of the entomopathogenic fungus Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) in grasshopper cadavers in the Sahel. Unlike uninfected cadavers, which were rapidly scavenged, those infected with the fungus persisted in the environment for a number of weeks. The environmental factor most associated with cadaver disappearance was rainfall. The high environmental humidity associated with rainfall was also required for sporulation of the fungus on host cadavers, although the likelihood of sporulation differed between microsites. Characteristics of the infection profile from infective cadavers were investigated by the sequential exposure of uninfected hosts to sporulating cadavers in field cages. This experiment revealed that cadavers remained infective for > 30 days, with the net infectivity changing through time. The most likely explanation for these changes is climatic influences on both the fungus and host. High humidity was not required for infection. A measurement of the transmission coefficient between healthy hosts and sporulating cadavers in the field was obtained at a realistic density of infectious cadavers. This revealed a figure of 0.45 m2 day–1. Overall, these experiments show that following host death, M. anisopliae var. acridum can be persistent in the environment, sporulate on host cadavers and reinfect new hosts at a realistically low field density, although at least in arid or semi-arid areas, rainfall may be critical to the horizontal transmission of this pathogen.  相似文献   

10.
The concentration of airborne Didymella spores has been investigated at two monitoring sites situated along the west–south transect in Poland (Szczecin, Kraków), i.e. from a height of 100 to 219 m, respectively, above sea level. The aerobiological monitoring of fungal spores was performed by means of two Lanzoni volumetric spore traps. The high Didymella spore numbers were observed at both cities in June, July and August. Statistically significant correlations have been found mainly between the Didymella spore concentrations in the air and the minimum air temperature and relative air humidity. The spore count of Didymella is determined by the diversity of local flora and weather conditions, especially by the relative air humidity. The identification of factors that influence and shape spore concentrations may significantly improve the current methods of allergy prevention.  相似文献   

11.
为了解珍稀濒危植物中华双扇蕨(Dipteris chinensis)濒危原因,研究了温度和湿度对其孢子萌发的影响.结果表明,中华双扇蕨孢子萌发能力较强,萌发方式为Vittaria型,配子体萌发为Marattia型.中华双扇蕨孢子繁殖不受温度影响,而湿度显著影响孢子繁殖过程,湿润环境中孢子正常萌发,并形成心形配子体,顺利...  相似文献   

12.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

13.
Aerobiological monitoring enables the definition of seasonal fungal spore concentrations and also intradiurnal time when the highest concentrations of spores could cause or increase allergy symptoms. These data are useful to estimate symptoms of disease, duration of infection and how advanced the illness is in people suffering from fungal allergens. The aim of the study was to compare the concentrations of fungal spores (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) during dry and rainy periods and to analyse their intradiurnal changes. Average daily spore concentrations in dry and rainy periods were compared, using z test, separately for each taxon, season and for a combined 3-year period. Intradiurnal periodicity of fungal spore concentrations was analysed on the basis of three complementary diagrams. These spore concentrations were presented using three curves for all, dry and rainy days in 1997–1999 (April–November). The spore percentage in particular hours was normalized in relation to the daily spore sum accepted as 100%. Two further diagrams enabled the more precise analysis of the highest concentrations in dry days. Daily Botrytis and Cladosporium spore concentrations did not show significant differences between dry and rainy periods. In the case of Didymella and Ganoderma spore concentrations, there were no significant differences between both weather types in the single years, although there was a significant difference when a 3-year period was considered. The differences between daily concentrations of Alternaria spores in dry and rainy periods occurred in 1997 and in a 3-year period. Intradiurnal periodicity of spore concentrations was different for ‘dry’ and ‘wet’ fungal spores. Dry spores are released from the spore-producing parts of the fungus under conditions of decreasing humidity and increasing airflow. Examples of dry spores are those from Alternaria, Cladosporium and Botrytis. Wet spores, such as those from many Ascomycetes (Didymella) and Basidiomycetes (Ganoderma), are released into the atmosphere by processes related to humidity conditions or rain. The highest concentrations of ‘dry’ spores were observed early in the afternoon, while highest values of ‘wet’ spore concentrations occurred in the predawn hours. Statistically non-significant differences between daily spore concentrations in dry and rainy periods of single seasons were found except for Alternaria. Statistically significant differences could occur when the studied period was longer than one season (Alternaria, Didymella, Ganoderma). The highest concentrations of Alternaria, Botrytis and Cladosporium spores were recorded at noon and early in the afternoon. Concentrations of Didymella and Ganoderma spores were highest in the predawn hours.  相似文献   

14.
A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004–2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.  相似文献   

15.
Two emulsions and two water-based-formulations of freeze dried submerged spores of Metarhiziumanisopliae var. acridum (Metch.) Sorokin(isolate IMI 330189) were compared with aerialconidia (GREEN MUSCLETM) for their efficacyagainst Hieroglyphus daganensis (Krauss)and Locusta migratoria (R. & F.). Thefield experiments were conducted in East Nigeron H. daganensis whereas the laboratoryinvestigations were carried out in Germanyusing L. migratoria. In the fields, allformulations were applied on one hectare plotsusing ULV application techniques. Direct andresidual spray effects were assessed. In allcases there were highly significant (p < 0.001) differences between formulations asregards to total mortalities and mediansurvival times (MST). In both direct and sprayresidue effect assessments, aerial conidiaformulated in diesel oil showed over 95%mortality with significantly shorter MST (3 to8 days) under field conditions. These werefollowed by emulsions of submerged spores,which resulted in a mortality ranging from 56to 92% (MST = 8 to 16 days) for the directspray and 90 to 97% (MST = 7 to 12 days) forspray residue effect assessments. Experimentsin the laboratory positively confirmed theseresults. There were no apparent differencesbetween water-based formulations and thecontrol with respect to mortality and MST.These results emphasize the importance ofemploying oil carriers to protect spores fromenvironmental stress and thus enhance efficacy.The study also demonstrated the importance ofsecondary spore pick up from the sprayresidues. Spores in all formulations persistedover five days and caused mortalities rangingfrom 62 to 100% on healthy grasshoppersexposed to the spray residue from treatedvegetation. The results of this researchsuggest that emulsions may be an effectiveoption to improve efficacy of submerged sporesfor ultra low volume application under Sahelianconditions.  相似文献   

16.
The effect of the chemical insecticide, fenitrothion, and a mycoinsecticide based on Metarhizium anisopliae var. acridum on the activity of non-target epigeal arthropod scavengers was investigated in areas of open savannah in southeast Niger Republic, West Africa. Both insecticides were applied as full cover sprays to unreplicated 800 ha plots to assess their season-long control of Sahelian grasshoppers. Compared with control plots, fenitrothion caused an immediate but temporary reduction in grasshopper numbers, whereas M. anisopliae var. acridum provided delayed but prolonged control. Scavenging rates of pyrethroid-killed grasshoppers placed along transects in unsprayed plots and those treated with fenitrothion and M. anisopliae var. acridum at various intervals after spraying were assessed. In the fenitrothion plot, an immediate reduction in scavenging activity occurred that was still apparent after 40 days at the plot center, although recovery at the plot edges was more rapid. By contrast scavenging rates remained high over equivalent areas in the M. anisopliae var. acridum and two untreated plots. Concurrent to the scavenging study, counts of grasshopper cadavers resulting from the spray treatments were conducted. These counts revealed that the density of grasshopper cadavers remained low throughout the M. anisopliae var. acridum plot and explained <1% of the reduction in live grasshoppers resulting from treatment, compared with >20% in the fenitrothion plot. This shortfall in grasshopper cadavers resulting from the spray treatment in the M. anisopliae var. acridum plot was unexpected because in a monitoring study, fungus-killed (unlike pyrethroid-killed) grasshoppers were unattractive to scavengers and readily persisted in this plot, and thus should have become apparent. Given we did not observe significant grasshopper dispersal, the scarcity of cadavers generated in the M. anisopliae var. acridum plot, together with unquantified visual observations, suggests that predation of infected but living grasshoppers was high. Our data provide circumstantial evidence that the different effects of chemical and biological grasshopper control on grasshopper natural enemies may influence the efficacy of large-scale treatments.  相似文献   

17.
Alternaria and Cladosporium spores belong to the most frequent and allergenic particles in bioaerosol in the temperate climate. The investigation of Alternaria and Cladosporium spore concentrations was performed in two cities in Poland, Szczecin and Cracow, in 2004–2013. The meteorological parameters taken to assess their impact on fungal spores were average, maximum and minimum temperature, relative humidity and average wind velocity. In order to reveal whether changes in dynamics of spore seasons are driven by meteorological conditions, ordination methods were applied. Canonical correspondence analysis was used to explore redundancy among the predictors (meteorological parameters). Prior to ordination analyses, the data were log(x)-transformed. Concentrations of Alternaria and Cladosporium spores were significantly higher in Szczecin comparing to Cracow, but it was also observed the decreasing trend in the spore concentrations in Szczecin. As regards temperature, it was higher in Cracow and was still increasing in the studied years. Relative humidity and wind velocity were significantly lower in Cracow. In Szczecin meteorological conditions did not explain changes in spore season characteristics (insignificant redundancy analysis models), while in Cracow’s redundancy analysis models indicated that spore season parameters were in over 40 % determined by meteorological conditions, mainly air temperature and wind velocity. If they increase, the peak value, total number of spores and their average concentrations in a season will also increase.  相似文献   

18.
Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005–2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores (Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores (Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.  相似文献   

19.
Qualitative and quantitative studies of atmospheric fungal spores at a chloralkali factory, Jayashree Chemicals. were made during 1993 employing culture plate and rotorod methods. A total of 57 sporulating fungal types, including three sterile mycelial forms, were recorded by the culture plate method and 51 spore types, including the hyphal fragments and unidentified spores, were recorded by the rotorod method. As to the seasonal variation, winter was found to be the greatest contributor of fungal spores as compared to the summer and rainy season. Instead, when considering the hour of the day, the peak number of fungal propagules was recorded at noon (12.00 h) followed by evening and morning values, an exception being recorded in winter months, when maximum CFUs ofCladosporium were monitored in the morning. The seasonal variation in fungal concentration and composition was found to be influenced by temperature, rainfall and relative humidity, whereas diurnal incidence was the effect of varying temperature and relative humidity during day time only. Moderate temperature and relative humidity favoured the maximum fungal spore load in the atmosphere.Cladosporium, Nigrospora, Alternaria, Lasiodiplodia, Drechslera, Pestalotia, Curvularia, Epicoccum, Aspergillus, Penicillium andChaetomium were the commonest fungal spores in the factory area.  相似文献   

20.
1 Recent years have seen an upsurge in locust and grasshopper populations in many parts of the world. Environmentally sustainable approaches to locust and grasshopper control may be possible through the use of biopesticides based on entomopathogenic fungi. Unfortunately, the performance of these biopesticides is highly variable with environmental temperature and host thermoregulatory behaviour critically determining the pattern and extent of mortality after applications. Here, we present a temperature‐dependent model that enables us to predict the field performance of Metarhizium anisopliae var. acridum, the key fungal pathogen used in locust biopesticides. 2 The model was constructed using mortality rate data generated across a range of temperatures in the laboratory and is driven by environmental temperature data linked through host body temperature models. 3 Model predictions were validated against empirical field data obtained for five species, Locustana pardalina, Oedaleus senegalensis, Zonocerus variegatus, Nomadacris septemfasciata and Chortoicetes terminifera. Mortality predictions were accurate to a 2‐day error in every 10 days. This level of resolution is satisfactory to guide operational use of the biopesticide. 4 The model was subsequently used for a prospective evaluation of the performance of M. anisopliae var. acridum against two additional pest species, Dociostaurus maroccanus and Calliptamus italicus in Spain. Results suggest that this pathogen would work reasonably well against these species as long as early instars are targeted. 5 The model could provide a useful tool to assist in interpreting effectiveness of control operations, develop improved application strategies to optimize the performance of the biopesticide and identify appropriate target species and environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号