首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

2.
Abstract: The A2a adenosine receptor agonist 2-[2-(4-amino-3-iodophenyl)ethylamino]adenosine is a potent coronary vasodilator. The corresponding radioiodinated ligand, [125I]APE, discriminates between high- and low-affinity conformations of A2a adenosine receptors. In this study, [125I]APE was used for rapid (24-h) autoradiography in rat brain sections. The pattern of [125I]APE binding is consistent with that expected of an A2a-selective radioligand. It is highest in striatum, nucleus accumbens, and olfactory tubercle, with little binding to cortex and septal nuclei. Specific [125I]APE binding to these brain regions is abolished by 1 µ M 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680) but is little affected by 100 n M 8-cyclopentyl-1,3-dipropylxanthine. Conversion of [125I]APE to the corresponding arylazide results in [125I]AzPE. The rank-order potency of compounds to compete for [125I]AzPE binding in the dark is CGS-21680 > d -( R )- N 6-phenylisopropyladenosine > N 6-cyclopentyladenosine, indicating that it also is an A2a-selective ligand. Specific photoaffinity labeling by [125I]AzPE of a single polypeptide (42 kDa) corresponding to A2a adenosine receptors is reduced 55 ± 4% by 100 µ M guanosine 5'- O -(3-thiotriphosphate) and 91 ± 1.3% by 100 n M CGS-21680. [125I]APE and [125I]AzPE are valuable new tools for characterizing A2a adenosine receptors and their coupling to GTP-binding proteins by autoradiography and photoaffinity labeling.  相似文献   

3.
In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.  相似文献   

4.
Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites ( B max = 139 ± 9 fmol/mg of protein) displaying a high affinity ( K D = 0.76 ± 0.09 n M ). The two cannabinoid receptor agonists, CP 55940 and WIN 55212-2, inhibited in a concentration-dependent manner cyclic AMP production induced by either 1 µ M forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 n M with forskolin and 1.0 and 5.1 n M with isoproterenol for CP 55940 and WIN 55212-2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µ M forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 n M in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940- and WIN 55212-2-induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor-specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen-activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212-2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures.  相似文献   

5.
An extended series of alkyl carboxamide analogs of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl- 1H-pyrazole-3-carboxamide (SR141716; 5) was synthesized. Each compound was tested for its ability to displace the prototypical cannabinoid ligands ([3H]CP-55,940, [3H]2; [3H]SR141716, [3H]5; and [3H]WIN55212-2, [3H]3), and selected compounds were further characterized by determining their ability to affect guanosine 5'-triphosphate (GTP)-gamma-[35S] binding and their effects in the mouse vas deferens assay. This systematic evaluation has resulted in the discovery of novel compounds with unique binding properties at the central cannabinoid receptor (CB1) and distinctive pharmacological activities in CB1 receptor tissue preparations. Specifically, compounds with nanomolar affinity which are able to fully displace [3H]5 and [3H]2, but unable to displace [3H]3 at similar concentrations, have been synthesized. This selectivity in ligand displacement is unprecedented, in that previously, compounds in every structural class of cannabinoid ligands had always been shown to displace each of these radioligands in a competitive fashion. Furthermore, the selectivity of these compounds appears to impart unique pharmacological properties when tested in a mouse vas deferens assay for CB1 receptor antagonism.  相似文献   

6.
The effects of the endogenous cannabinoid anandamide [arachidonylethanolamide (AEA)] on the function of nicotinic acetylcholine receptor (nAChR) were investigated using the 86Rb+ efflux assay in thalamic synaptosomes. AEA reversibly inhibited 86Rb+ efflux induced by 300 μM ACh with an IC50 value of 0.9 ± 2 μM. Pre-treatment with the cannabinoid (CB1) receptor antagonist SR141716A (1 μM), the CB2 receptor antagonist SR144528 (1 μM), or pertussis toxin (0.2 mg/mL) did not alter the inhibitory effects of AEA, suggesting that known CB receptors are not involved in AEA inhibition of nAChRs. AEA inhibition of 86Rb+ efflux was not reversed by increasing acetylcholine (ACh) concentrations. In radioligand binding studies, the specific binding of [3H]-nicotine was not altered in the presence of AEA, indicating that AEA inhibits the function of nAChR in a non-competitive manner. Neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor, indomethacin, (5 μM) affected AEA inhibition of nAChRs, suggesting that the effect of AEA is not mediated by its metabolic products. Importantly, the extent of AEA inhibition of 86Rb+ efflux was significantly attenuated by the absence of 1% fatty acid free bovine serum albumin pre-treatment, supporting previous findings that fatty acid-like compounds modulate the activity of nAChRs. Collectively, the results indicate that AEA inhibits the function of nAChRs in thalamic synaptosomes via a CB-independent mechanism and that the background activity of these receptors is affected by fatty acids and AEA.  相似文献   

7.
Abstract: Methyl 3β-(4-[125I]iodophenyl)tropane-2β-carboxylate ([123I]β-CIT) is a single photon emission computed tomographic radiotracer for in vivo labeling of dopamine (DA) and serotonin (5-HT) transporters. Single photon emission computed tomographic experiments in nonhuman primates showed that [123I]β-CIT in vivo binding to DA transporters had a much slower washout than binding to 5-HT transporters. This observation was not predicted from previously published in vitro studies. These studies, performed at 22°C in nonphysiological buffer, reported similar affinity of [125I]β-CIT for DA and 5-HT transporters. We now report [125I]β-CIT binding parameters to fresh rat membranes at 22°C and 37°C, in a buffer mimicking the composition of cerebrospinal fluid. At both temperatures, binding to DA transporters was best fit by a twosite model, whereas binding to 5-HT transporters was compatible with one population of sites. At 22°C, [125I]β-CIT showed similar affinity to high-affinity DA (0.39 n M ) and 5-HT transporter sites (0.47 n M ). Increasing the incubation temperature from 22°C to 37°C reduced binding to DA transporters by 60%, whereas binding to 5-HT transporters was only marginally affected. In vitro kinetic experiments failed to detect significant differences in on or off rates that could explain the observed in vivo kinetics. These experiments thus failed to explain [123 I]β-CIT in vivo uptake kinetics, suggesting the existence of specific factors affecting the in vivo situation.  相似文献   

8.
Abstract— [125I]Diiodo α-bungarotoxin ([125I]2BuTx) and [3H]quinuclidinylbenzilate ([3H]QNB) binding sites were measured in post-nuclear membrane fractions prepared from whole brains or brain regions of several species. Species studied included Drosophila melanogaster (fruit fly), Torpedo californiea (electric ray), Carassius auratus (goldfish), Ram pipiens (grass frog), Kana cutesheiana (bullfrog), Rattus norvegicus (rat, Sprague-Dawley), Mus muscalus (mouse, Swiss random, C58/J, LG/J), Oryctolagus cuniculus (rabbit, New Zealand Whitc), and Bos (cow). Acetyl-CoA: choline O -acetyltransferase (EC 2.3.1.6) levels were also determined in the post nuclear supernatants and correlated with the number of binding sites.
All species and regions except Drosophila had 16–150 fold more [3H]QNB binding sites than [125I]2BuTx binding sites. Brain regions with the highest levels of [125I]2BuTx binding were Drosophila heads (300 fmol/mg), goldfish optic tectum (80fmol/mg), and rat and mouse hippocampus (3040 fmol/mg). The highest levels of [3H]QNB binding were seen in rat and mouse caudate (1.3–1.6 pmol/mg). Lowest levels of [3H]QNB and [125I]2BuTx binding were seen in cerebellum. The utility of [125I]2BuTx and [3H]QNB binding as quantitative measures of nicotinic and muscarinic acetylcholine receptors in CNS is discussed.  相似文献   

9.
Abstract: A synthetic peptide (25 amino acids) corresponding to a specific portion of the third intracytoplasmic loop of the rat serotonin 5-HT1B/1Dβ receptor was coupled to keyhole limpet hemocyanin and injected monthly into rabbits. Anti-peptide antibodies were detected by enzyme-linked immunosorbent assay and characterized by immunoprecipitation of the 5-HT1B/1Dβ receptor in CHAPS-solubilized extracts from rat striatal membranes. Up to 60% of solubilized striatal serotonin- O -carboxymethylglycyl[125I]iodotyrosinamide ([125I]GTI; a selective 5-HT1B/1D radioligand) binding sites were immunoprecipitated and subsequently pharmacologically identified as 5-HT1B receptors. The remaining 40% of [125I]GTI binding sites were shown to be 5-HT1D receptors. In addition, these antibodies were successfully used in immunofluorescence experiments to detect the 5-HT1B/1Dβ, but not the 5-HT1D/1Dα, receptor in transiently transfected LLC-PK1 cells. Immunoautoradiographic experiments performed with brain sections from the rat, mouse, and guinea pig showed that the substantia nigra and globus pallidus contained the highest densities of 5-HT1Dβ receptor-like immunoreactivity. Comparison of the regional distribution of immunolabeling with that of the specific binding of [125I]GTI in the brain of these species further confirmed that the anti-peptide antibodies selectively recognized only the 5-HT1Dβ component of [125I]GTI specific receptor binding sites.  相似文献   

10.
The aim of the present study was to classify release-inhibiting receptors on rat pheochromocytoma PC12 cells. Veratridine-evoked [3H]noradrenaline release from PC12 cells was inhibited by micromolar concentrations of the imidazoline and guanidine derivatives cirazoline, clonidine, aganodine, 1,3-di(2-tolyl)guanidine, BDF6143 and agmatine, and of the cannabinoid receptor agonist WIN55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-yl](1-naphthalenyl)methanone mesylate), but not by noradrenaline. The inhibitory effect of clonidine was antagonized by micromolar concentrations of rauwolscine and SR141716A (N-[piperidin-1-yl]-5-[4-chlorophenyl]-1-[2,4-dichlorophenyl]-4-methyl-1H-pyrazole-3-carboxamide). The potencies of the agonists and antagonists were compatible with an action at previously characterized presynaptic imidazoline receptors. 1-Oleoyl-lysophosphatidic acid, but not sphingosine-1-phosphate, produced an inhibition of release that was antagonized by 30 microM rauwolscine, 1 microM SR141716A and 10 microM LY320135 as well as by pretreatment of the cells with 100 microM clonidine for 72 h. Polymerase chain reaction (PCR) experiments on cDNA from PC12 mRNA suggest mRNA expression of lysophospholipid receptors encoded by the genes edg2, edg3, edg5 and edg7, but not of receptors encoded by edg1, edg4, edg6 and edg8, and not of alpha(2A(-))nd CB(1) receptors. In conclusion, PC12 cells are not endowed with alpha(2)-adrenoceptors and CB(1) cannabinoid receptors, but with an inhibitory receptor recognizing imidazolines, guanidines and WIN55,212-2 similar to that on sympathetic nerves. The PCR results and the ability of 1-oleoyl-LPA to mimic these drugs (also with respect to their susceptibility to antagonists) suggest that the release-inhibiting receptor may be an edg-encoded lysophospholipid receptor.  相似文献   

11.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

12.
Soluble amyloid-β peptide (Aβ) exists in the form of monomers and oligomers, and as complexes with Aβ-binding molecules, such as low-density lipoprotein receptor-related protein-1 (LRP-1) ligands. The present study investigated the effect of self-aggregation and LRP-1 ligands on the elimination of human Aβ(1–40) [hAβ(1–40)] from the rat brain across the blood–brain barrier. Incubation of [125I]hAβ(1–40) monomer resulted in time-dependent and temperature-dependent dimer formation, and the apparent elimination rate of [125I]hAβ(1–40) dimer was significantly decreased by 92.7% compared with that of [125I]hAβ(1–40) monomer. Pre-incubation with LRP-1 ligands, such as activated α2-macroglobulin (α2M), apolipoprotein E2 (apoE2), apoE3, apoE4, and lactoferrin, reduced the elimination of [125I]hAβ(1–40). By contrast, pre-administration of the same concentration of these molecules in the rat brain did not significantly inhibit [125I]hAβ(1–40) monomer elimination. Purified [125I]hAβ(1–40)/activated α2M complex and [125I]activated α2M were not significantly eliminated from the rat brain up to 60 min. MEF-1 cells, which have LRP-1-mediated endocytosis, exhibited uptake of [125I]activated α2M, and enhancement of [125I]hAβ(1–40) uptake upon pre-incubation with apoE, suggesting that [125I]activated α2M and [125I]hAβ(1–40)/apoE complex function as LRP-1 ligands. These findings indicate that dimerization and LRP-1-ligand complex formation prevent the elimination of hAβ(1–40) from the brain across the blood–brain barrier.  相似文献   

13.
Abstract: Melatonin and 5-methoxytryptamine inhibited forskolin-stimulated cyclic AMP formation in cultured neural cells prepared from embryonic chick retina. Both methoxyindoles exhibited similar potency and efficacy, with EC50 values of 0.8 n M for melatonin and 7.2 n M for 5-methoxytryptamine. Inhibition of cyclic AMP formation by 5-methoxytryptamine or melatonin was prevented by pretreatment with pertussis toxin. Pretreatment of cultures with 5-methoxytryptamine for 24 h reduced the subsequent inhibitory cyclic AMP response to 5-methoxytryptamine but not that to 2-iodomelatonin. Putative melatonin receptors on cultured retinal cells were labeled with 2-[125I]iodomelatonin. Melatonin displaced specific 2-[125I]iodomelatonin with a K i value (0.8 n M ) similar to the EC50 for inhibition of cyclic AMP formation. In contrast, 5-methoxytryptamine only inhibited 2-[125I]iodomelatonin binding at very high concentrations ( K i = 650 n M ). Pretreating cultured cells for 24 h with 2-iodomelatonin or melatonin, but not with 5-methoxytryptamine, reduced subsequent 2-[125I]iodomelatonin binding. Thus, 5-methoxytryptamine appears to inhibit forskolin-stimulated cyclic AMP formation at a site distinct from the 2-iodomelatonin binding site.  相似文献   

14.
Abstract: The multisubunit γ-aminobutyric acid type A (GABAA) receptor is heterogeneous in molecular and pharmacological aspects. We used quantitative autoradiographic techniques to generate detailed pharmacological profiles for the binding of the GABAA-receptor ionophore ligand tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) and its modulation by GABA and the GABAA antagonists bicuculline and 2'-(3'-carboxy-2',3'-propyl)-3-amino-6- p -methoxyphenylpyrazinium bromide (SR 95531). Regional differences in the actions of bicuculline and SR 95531 were correlated with the expression of 13 GABAA subunits in brain as reported previously. In some brain regions SR 95531 reduced [35S]TBPS binding much more than bicuculline, as illustrated by high ratios of bicuculline- to SR 95531-modulated [35S]TBPS binding. This ratio correlated positively with α2-subunit mRNA levels. Binding that was equally affected by SR 95531 and bicuculline occurred prominently in regions with abundant α1 mRNA expression. The present findings thus reveal a novel pharmacological heterogeneity based on differences between α1 and α2 subunit-containing GABAA receptors. The data aid in developing GABAA-receptor subtype-specific antagonists and in establishing receptor domains critical for the actions of GABAA antagonists.  相似文献   

15.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of oxadiazole-diarylpyrazole 4-carboxamides. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-phenyl-1H-pyrazole-4-carboxamide (12q) and 5-(4-bromophenyl)-3-(5-tert-butyl-1,3,4-oxadiazol-2-yl)-1-(2,4-dichlorophenyl)-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide (12r) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 1.35 nM, CB2/CB1 = 286 for 12q; IC50 = 1.46 nM, CB2/CB1 = 256 for 12r).  相似文献   

16.
The effects of cannabinoid receptor agonists and antagonists on smooth muscle resting membrane potentials and on membrane potentials following electrical neuronal stimulation in a myenteric neuron/smooth muscle preparation of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice were investigated in vitro. Double staining for CB1 and nitric oxide synthase (neuronal) was performed to identify the myenteric CB1-expressing neurons. Focal electrical stimulation of the myenteric plexus induced a fast (f) excitatory junction potential (EJP) followed by a fast and a slow (s) inhibitory junction potential (IJP). Treatment of wild-type mice with the endogenous CB1 receptor agonist anandamide reduced EJP while not affecting fIJP and sIJP. EJP was significantly higher in CB1-deficient mice than in wild-type littermate controls, and anandamide induced no effects in CB1-deficient mice. N-arachidonoyl ethanolamide (anandamide), R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]- 1,4-benzoxazin-6-yl]-1-naphtalenylmethanone, a synthetic CB1 receptor agonist, nearly abolished EJP and significantly reduced the fIJP in wild-type mice. N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxamide (SR141716A), a CB1-specific receptor antagonist, was able to reverse the agonist effects induced in wild-type mice. SR141716A, when given alone, significantly increased EJP in wild-type mice without affecting IJP in wild-type and EJP in CB1-deficient mice. Interestingly, SR141716A reduced fIJP in CB1-deficient mice. In the mouse colon, nitrergic myenteric neurons do not express CB1, implying that CB1 is expressed in cholinergic neurons, which is in line with the functional data. Finally, excitatory and inhibitory neurotransmission in the mouse colon is modulated by activation of CB1 receptors. The significant increase in EJP in CB1-deficient mice strongly suggests a physiological involvement of CB1 in excitatory cholinergic neurotransmission.  相似文献   

17.
In the present study, we observed evidence of cross-talk between the cannabinoid receptor CB1 and the orexin 1 receptor (OX1R) using a heterologous system. When the two receptors are co-expressed, we observed a major CB1-dependent enhancement of the orexin A potency to activate the mitogen-activated protein kinase pathway; dose-responses curves indicated a 100-fold increase in the potency of orexin-mediated mitogen-activated protein kinase activation. This effect required a functional CB1 receptor as evidenced by the blockade of the orexin response by the specific CB1 antagonist, N-(piperidino-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-pyrazole-3-carboxamide (SR141716), but also by pertussis toxin, suggesting that this potentiation is Gi-mediated. In contrast to OX1R, the potency of direct activation of CB1 was not affected by co-expression with OX1R. In addition, electron microscopy experiments revealed that CB1 and OX1R are closely apposed at the plasma membrane level; they are close enough to form hetero-oligomers. Altogether, for the first time our data provide evidence that CB1 is able to potentiate an orexigenic receptor. Considering the antiobesity effect of SR141716, these results open new avenues to understand the mechanism by which the molecule may prevent weight gain through functional interaction between CB1 and other receptors involved in the control of appetite.  相似文献   

18.
Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor.  相似文献   

19.
Abstract: Displacement of [3H]glutamate by 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid and quisqualate (in the presence of saturating concentrations of ionotropic glutamate receptor agonists) was used to characterize optimal ionic conditions, distribution, and the ontogeny of glutamate receptor binding sites in rat brain. Using rat forebrain membranes or receptor autoradiography, optimal 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive [3H]glutamate binding was found in the presence of 100 m M bromide ions and in the absence of calcium ions. Under these conditions, [3H]glutamate binding was relatively quisqualate insensitive. In regions of the neonatal (11-day-old) and adult rat brain, this [3H]glutamate binding was highest in forebrain (striatum, cerebral cortex, and hippocampus) and hypothalamus/midbrain but was lower in the cerebellum, olfactory bulb, and pons/medulla regions. 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive and quisqualate-insensitive [3H]glutamate binding was present in the rat forebrain at 1 day of age and gradually increased more than twofold by day 50 (adult). Thus, in the presence of bromide ions and in the absence of calcium ions, [3H]glutamate labels a subpopulation of metabotropic glutamate receptors that are sensitive to 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid but insensitive to quisqualate. Expression of [3H]glutamate binding under these conditions was both regionally and developmentally regulated in rat brain, suggesting that [3H]glutamate is labeling a distinct population of metabotropic glutamate receptors.  相似文献   

20.
Abstract: In this report, we have examined the radioligand binding and second messenger signalling characteristics of β-adrenoceptors in the guinea-pig brain. [125I]lodocyanopindolol ([125I]ICYP)-labelled sites in the cerebellum and cerebral cortex were of similar densities ( B max 34 and 24 fmol·mg−1) and affinities ( K D 20 and 55 p M ), respectively. Analysis of competition for [125I]ICYP binding in the cerebellum was compatible with the presence of a β2-adrenoceptor. In this tissue, isoprenaline evoked a cyclic AMP stimulation, and also potentiated cyclic GMP accumulations evoked in the presence of a nitric oxide donor, consistent with mediation via a β2-adrenoceptor. The [125I]ICYP binding profile in the cerebral cortex did not comply with those previously described for β-adrenoceptor subtypes, and isoprenaline failed to alter significantly cyclic AMP accumulation in the cerebral cortex, hippocampus, or neostriatum, even in the presence of forskolin or a phosphodiesterase inhibitor. Isoprenaline was also without effect on cyclic GMP accumulation or phosphoinositide turnover in the cerebral cortex. These results suggest that the guinea-pig cerebellum expresses a functional β2-adrenoceptor coupled to cyclic AMP generation, and potentiation of cyclic GMP accumulation. However, the guinea-pig cerebral cortex displays binding sites that exhibit β-adrenoceptor-like pharmacology but fail to show functional coupling to cyclic AMP, cyclic GMP, or phosphoinositide signalling systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号