首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
Rhizobium etli strain TAL182 and R. leguminosarum bv phaseoli strain 8002, both of which produce melanin pigment, were tested for their nodulation competitiveness on beans by paired inoculation with two strains which do not produce melanin: R. tropici strain CIAT899 and Rhizobium sp. strain TAL1145. An assay was developed to distinguish nodules formed by the melanin-producing and non-producing strains. Strain TAL182 had discrete competitive superiority over CIAT899 and TAL1145 for nodulation of beans. Nodulation competitiveness was not correlated with the ability to produce melanin pigment or the host range of the Rhizobium strains tested.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gillmore 402, Honolulu, HI 96822, USA  相似文献   

2.
Rhizobium Ieguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodutes in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4 kb Hin dlll fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum.  相似文献   

3.
Two experiments were carried out to evaluate the effect of acidity on bean-Rhizobium competition for nodule sites. SevenPhaseolus vulgaris host cultivars differing in acid-pH tolerance were grown in sand culture, and irrigated using a sub-irrigation system and nutrient solutions of pH 4.5, 5.0, 5.5, and 6.0. A mixed inoculant of two antibiotically markedRhizobium leguminosarum bvphaseoli strains CIAT899 (acid-tolerant) and CIAT632 (acid-sensitive) was used. The acid-tolerant CIAT899 dominated CIAT632 in nodule occupancy across all cultivars and pH treatments. Although several of the varieties had previously been identified as PH-tolerant, and these cultivars performed better than those reported to be acid sensitive, all showed a marked increase in nodulation and plant development when the pH was raised from 4.5 to 6.0. The second experiment using a modified Leonard jar system varied the inoculation ratio between CIAT899 and UMR1116 (acid-sensitive, inefficient in N2-fixation) and contrasted nodulation response for the bean varieties Preto 143 (pH-tolerant) and Negro Argel (pH-sensitive) at 3 pH treatments (4.5, 5.5, 6.5). There was a significant effect of host cultivar, ratio of inoculation, and pH on the percentage of nodule occupancy by each strain. At low pH CIAT899 had higher nodule occupancy than UM1116 in the variety Negro Argel but had the same percentage of nodulation when the variety was Preto 143. Increasing the cell concentration of UMR1116 produced more inefficient nodules at all treatment combinations and reduced plant growth for both cultivars used.  相似文献   

4.
The survival of Rhizobium leguminosarum biovar phaseoli on seeds of bean was tested, using the cultivar Carioca. The seeds were treated seven days before inoculation with Benlate, Vitavax, Banrot, Difolatan or Ridomil fungicides. The rhizobial strains used were: CIAT 899, CPAC 1135 and CIAT 652. Strain CIAT 899 showed greater survival on the seed with fungicide than the other strains. Two hours after the contact with fungicides strains CIAT 652 and CPAC 1135 had significantly lower numbers of rhizobia than the treatment without fungicide. The Benlate and Banrot fungicides had the greatest effect on survival of rhizobial strains. There was a drastic mortality of the two strains, CIAT 652 and CPAC 1135, on seeds treated with Benlate and Ridomil. Under field conditions, granular inoculation produced fewer nodules, but a similar total nodule weight as seed inoculation. Serological tests (ELISA) showed that seed treatment with Benlate in connection with seed inoculation reduced drastically the occurrence of inoculated strains in nodules, while the same fungicide treatment and inoculation applied in the seed furrow did not affect the survival of the inoculated strain.  相似文献   

5.
Two Rhizobium etli strains, EBRI 2 and EBRI 26, isolated from Egypt were tested for nodulation competitiveness on beans using Rhizobium tropici CIAT 899G as the competing strain. The insertion of the gus-reporter transposon mTn5ssgusA30 did not alter the nodulation or nitrogen fixation capacity of mutant strain CIAT 899G compared to the wild type. At neutral pH, R. etli strains EBRI 2 and EBRI 26 were more competitive than CIAT 899G with the bean cultivar Saxa. These two strains gave nodule occupancies of 52.1 and 61.1% competing with equal cell numbers of CIAT 899G. Nodule occupancies from these two native strains increased with the bean cultivar Giza 6 from Egypt to 66 and 67.5%. Based on these results, cultivar Giza 6 was used to select the most competitive strains under stress of salinity or alkalinity as a major problem for a large part of Egyptian soils. Under stress of salinity (0.2% NaCl or 34.2 mM NaCl), the salt-sensitive strain EBRI 2 was more competitive than the salt-resistant strain EBRI 26. Strain EBRI 2 gave 87.4% but strain EBRI 26 gave 63.7% nodule occupancy against CIAT 899G. The same trend of results was observed under stress of alkalinity (pH 8). Strain EBRI 2 occupied 83% while Strain EBRI 26 occupied 53.2%.  相似文献   

6.
Since Phaseolus vulgaris (L) is poorly nodulated in all regions of Tunisia where this crop is grown, the response of common-bean lines CocoT and Flamingo to inoculation with reference Rhizobium tropici CIAT 899 or native rhizobia, namely Sinorhizobium fredii 1a6, Rhizobium etli 12a3, and Rhizobium gallicum 8a3, was studied in a field station. Since R. etli 12a3 was found to be the most effective native rhizobium, it was subsequently compared with R. tropici CIAT 899 in a broader study in two stations over 3 years. A significant interaction between bean and rhizobia was observed for nodule number, shoot dry weight, grain yield, and contents of nitrogen and chlorophyll. The native rhizobia was more efficient than CIAT899 for Flamingo, though not for CocoT. The Enzyme-linked immunosorbent assay technique was used with polyclonal antibody to assess the occupancy in nodule and persistence in soil of the inoculated rhizobia. For both stations the nodule occupancy was 100% during the first year for each rhizobium, but during the next 2 years, between 7 and 15% of nodules were formed by the rhizobia inoculated in the neighboring plot. It is concluded that the first-year inoculation is sufficient to maintain an adequate rate of nodulation during three growth cycles, and that the native R etli can be recommended for the common-bean inoculation in similar soils of Tunisia.  相似文献   

7.
Six effective Rhizobium leguminosarum bv. phaseoli strains were examined for nodulation competitiveness on common bean (Phaseolus vulgaris L.), using all possible two-strain combinations of inoculum. Nodule occupancy was determined with strain-specific fluorescent antibodies. The strains were divided into three groups according to their overall competitive abilities on pole bean cv. Kentucky Wonder and bush bean cv. Bountiful. Strains TAL 182 and TAL 1472 were highly competitive (greater than 70% nodule occupancy); strains KIM-5, Viking 1, and CIAT 899 were moderately competitive (approximately 50% nodule occupancy); and strain CIAT 632 was poorly competitive (less than 5% nodule occupancy). The competitiveness of the six strains was similar on the two host cultivars. The proportion of competing strains in the inoculum influenced the nodule occupancy of the highly competitive and moderately competitive strains, but not that of the poorly competitive strain. Two outstanding strains (TAL 182 and TAL 1472) were identified as ideal model strains for molecular and genetic studies on nodulation competitiveness.  相似文献   

8.
Ten strains ofRhizobium leguminosarum bv.phaseoli isolated from soils of Morocco were more tolerant than three culture collection strains to acid conditions in culture media or in sterile soil. The survival rate of a tolerant strain in a sandy acid soil was greater than a sensitive strain at different humidity levels. These properties should give locally selected strains an advantage in nodulatingPhaseolus vulgaris roots in soils similar to those used here.  相似文献   

9.
Soil acidity and high temperature contribute to the failure of nodulation in the common bean. It is therefore urgent to select strains with a high competitive ability under these stress conditions. Two Egyptian Rhizobium etli strains, EBRI 2 and EBRI 26, were examined against Rhizobium tropici CIAT 899G labeled with the gus (β-glucuronidase) reporter gene. EBRI 2 and EBRI 26 were less competitive than CIAT 899G under acid conditions with both the Egyptian cultivar Giza 3 and the Colombian cultivar Rab 39. However, EBRI 2 and EBRI 26 gave higher nodule occupancy (78% and 62.5, respectively) than the nodule occupancy (18.5% and 35%) obtained by CIAT 899G at 35°C with cultivar Giza 3. Soil acidity (pH 5.8) was less detrimental to the nodule occupancy of EBRI 2 than EBRI 26 when they tested in competition with CIAT 899G.  相似文献   

10.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   

11.
Competition from native soil rhizobia is likely to be an important factor limiting Phaseolus vulgaris L. inoculant response in Latin America. We used UMR 1116, a nod + fix natural mutant of Rhizobium leguminosarum bv phaseoli strain CC511, as a reference strain to study competition for nodulation sites in this species. When P. vulgaris cv Carioca was planted in soils containing different proportions of UMR 1116 and the effective and competitive strain UMR 1899, UMR 1116 occupied more than 50% of the nodules at all inoculant ratios tested, though increasing the proportion of UMR 1899 in the inoculant did enhance the number and percentage of effective nodules and plant dry weight. Sixty two strains of bean rhizobia were tested in competition with UMR 1116. An inoculant ratio of 1:1 was used, with all strains applied to the soil rather than to seeds. Strains varied in the number and percentage of effective nodules produced in competition with UMR 1116, and in plant dry weight, and there was a strong correlation between variation in each of these traits and plant N accumulation. Seven of the strains (UMR 1073, 1084, 1102, 1125, 1165, 1378 and 1384) were identified as both superior in competitive ability and active in N2 fixation. Site of placement of the inoculant and ambient temperature influenced strain response.Journal paper 16736, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

12.
Screening of Rhizobium leguminosarum bv. phaseoli strains showed some that were able to nodulate common beans (Phaseolus vulgaris L.) at high temperatures (35 and 38°C/8 h/day). The nodulation ability was not related to the capability to grow or produce melanin-like pigment in culture media at high temperatures. However, nodules formed at high temperatures were ineffective and plants did not accumulate N in shoots. Two thermal shocks of 40°C/8 h/day at flowering time drastically decreased nitrogenase activity and nodule relative efficiency of plants otherwise grown at 28°C. Recovery of nitrogenase activity began only after seven days, when new nodules formed; total incorporation of N in tops did not recover for 2 weeks. Non-inoculated beans receiving mineral N were not affected by the thermal shock, and when growing continuously at 35 or 38°C had total N accumulated in shoots reduced by only 18%.  相似文献   

13.
Summary Soybean (Glycine max {L.} Merr.) cultivars were inoculated withGigaspora gigantea andGlomus mosseae to determine mycorrhizal: cultivar relationships as affected by soil pH. The specific cultivarfungal response was dependent on soil pH. Overall cultivar responses in unlimed soil (pH 5.1) were greater forG. gigantea thanG. mosseae. The Bossier —G. gigantea combination was particularly responsive in unlimed soil and showed an increase of 10% in shoot length, 35% in shoot dry weight. 75% in root dry weight, and 397% in nodule dry weight over uninoculated controls. Little cultivar response was observed withG. mosseae inoculation in unlimed soil. In limed soil (pH 6.2), the larger responses were obtained withG. mosseae inoculated plants, although inoculation with eitherG. mosseae orG. gigantea appeared effective. In general, nodulation was greater on mycorrhizal roots than on control roots.  相似文献   

14.
Seven bean rhizobial strains EBRI 2, 3, 21, 24, 26, 27 and 29 identified as Rhizobium etli, and EBRI 32 identified as Rhizobium gallicum, isolated from Egyptian soils and which nodulated Phaseolus vulgaris efficiently, were subjected to hybridization with a nifH probe in order to estimate the copy number of this gene. Seven strains (EBRI 2, 3, 21, 24, 26, 27 and 29) which were only able to nodulate Phaseolus vulgaris, contained three copies of the nifH gene, consistent with their identification as Rhizobium etli bv. phaseoli. Only one strain (EBRI 32) which nodulated both Phaseolus vulgaris and Leucaena leucocephala, had one copy of nifH gene. This confirmed the classification of this strain as Rhizobium gallicum bv. gallicum.  相似文献   

15.
PCR-mediated restriction fragment length polymorphism (RFLP) analysis of the 16S-23S rRNA internally transcribed spacer (ITS) region and the 16S rRNA gene indicated that the rhizobial populations isolated from common bean (Phaseolus vulgaris L.) nodules in the unlimed soil from a series of five lime rates applied 6 years previously to plots of an acidic oxisol had less diversity than those from plots with higher rates of liming. Isolates affiliated with Rhizobium tropici IIB and Rhizobium leguminosarum bv. phaseoli were predominant independent of lime application. An index of richness based on the number of ITS groups increased from 2.2 to 5.7 along the soil liming gradient, and the richness index based on “species” types determined by RFLP analysis of the 16S rRNA gene varied from 0.5 to 1.4. The Shannon index of diversity, based on the number of ITS groups, increased from 1.8 in unlimed soil to 2.8 in limed soil, and, based on RFLP analysis of the 16S rRNA gene, ranged from 0.9 to 1.4. In the limed soil, the subpopulation of R. tropici IIB pattern types contained the largest number of ITS groups. In contrast, there were more R. leguminosarum bv. phaseoli types in the unlimed soil with the lowest pH than in soils with the highest pH. The number of ITS (“strain”) groups within R. leguminosarum bv. phaseoli did not change with increased abundance of rhizobia in the soil, while with R. tropici IIB, the number of strain groups increased significantly. Some cultural and biochemical characteristics of Phaseolus-nodulating isolates were significantly related to changes in soil properties caused by liming, largely due to changes in the predominance of the rhizobial species groups.  相似文献   

16.
Anyango  Beatrice  Wilson  Kate  Giller  Ken 《Plant and Soil》1998,202(1):69-78
The contribution of appropriate inoculum strains to more efficient nitrogen fixation by legumes has been difficult to assess due to the laborious nature of the assays involved in assessing establishment of inoculum strains in the field. The use of marker genes, in particular the GUS system, changes this, making it possible to assess occupancy by the inoculum strain in large numbers of nodules on whole root systems. Here we used the GUS system to evaluate the competitive ability of two rhizobial strains, Rhizobium leguminosarum bv. phaseoli strain Kim5 and R. tropici strain CIAT899 in two soil types from Kenya. The results confirm that Kim5 is a highly competitive strain, forming 86% of the nodules in a near-neutral pH soil. Although the competitiveness of CIAT899 is enhanced in an acid (pH 4.5) soil it still only formed 35% of the nodules. There were no differences between inoculum strains in their efficiency of nitrogen fixation in either soil type, and virtually no N2-fixation occurred in the acid soil due to the lack of tolerance of the Phaseolus genotype to soil acidity.  相似文献   

17.
A greenhouse experiment was performed to evaluate the effects of plant growth-promoting rhizobacteria (PGPR) on nodulation, biological nitrogen fixation (BNF) and growth of the common bean (Phaseolus vulgaris L. cv. Tenderlake). Single and dual inoculation treatments of bean with Rhizobium and/or PGPR were administered to detect possible changes in the levels of and interactions between the phytohormones IAA and cytokinin. Bean plants cv. Tenderlake were grown in pots containing Fluvic Neosol eutrophic (pH 6.5). Fourteen kilogram aliquots of soil contained in 15-l pots were autoclaved. Bean seeds were surface sterilized and inoculated with Rhizobium tropici (CIAT 899-standard strain) alone and in combination with one of the PGPR strains: Bacillus endophyticus (DSM 13796), B. pumilus (DSM 27), B. subtilis (DSM 704), Paenibacillus lautus (DSM 13411), P. macerans (DSM 24), P. polymyxa (DSM 36), P. polymyxa (Loutit L.) or Bacillus sp.(65E180). The experimental design was randomized block design with three replications. Beans co-inoculated with Rhizobium tropici (CIAT899) and Paenibacillus polymyxa (DSM 36) had higher leghemoglobin concentrations, nitrogenase activity and N2 fixation efficiency and thereby formed associations of greater symbiotic efficiency. Inoculation with Rhizobium and P. polymyxa strain Loutit (L) stimulated nodulation as well as nitrogen fixation. PGPR also stimulated specific-nodulation (number of nodules per gram of root dry weight) increases that translated into higher levels of accumulated nitrogen. The activities of phytohormones depended on their content and interactions with Rhizobium tropici and Paenibacillus and/or Bacillus (PGPR) strains which affect the cytokinin in content in the common bean.  相似文献   

18.
After NTG treatment of the very effective wild type strain P121 ofRhizobium leguminosarum biovarphaseoli, mutants defective in the utilization of sugars or organic acids were obtained. All the mutants nodulated the cultivar Goldie ofPhaseolus vulgaris. The arabinose, fructose, glucose and pyruvate utilization mutants formed nodules similar in shape and size to the nodules formed by the wild type strain. These mutants exhibited an acetylene reduction activity significantly lower than the activity observed with the wild type strain. All the C4-dicarboxylic acid utilization mutatns, formed ineffective nodules that did not show a significant acetylene reduction activity. The C4-dicarboxylic acids uptake system is apparently inducible in the free-living bacteria of strain P121. When P121 cells were grown on glucose in the presence of 2.5 mM malate, the rate of glucose-dependent O2 consumption significantly decreased suggesting the presence of a catabolite repression-like phenomenon. Isolated bacteroids of strain P121, under the experimental conditions used, were able to oxidize succinate, fumarate or malate but did not oxidize pyruvate, glucose, fructose or sucrose.  相似文献   

19.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

20.
Two cultivars of Phaseolus vulgaris L., one responsive (Mexico 309) and one less-responsive (Rio Tibagi) to nodulation with Rhizobium were grown in Leonard jars in a greenhouse. Bean plants were either inoculated with a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899), a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus etunicatum) or were left non-inoculated (controls). At two harvests (21 and 28 days post-emergence), extracts containing soluble proteins and free amino acids were prepared from leaves, roots and nodules of field beans. Nodulated plants contained a significantly higher concentration of protein and amino acids in all plant parts. Nitrogen-fixing beans invested a significantly greater proportion of total N as protein-N and amino acid-N as compared to VAM or control beans. Abundant nodule-specific proteins (nodulins) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), identified and quantified using scanning densitometry. Rio Tibagi nodules contained a significantly lower concentration of glutamine synthetase (GS) subunits than did Mexico 309 nodules. Glutamate synthase (GOGAT) and GS activities were low relative to other legumes. The transferase/synthetase ratio for GS was also low indicating that the synthetase activity was caturated and was operating at maximal level in these young N2-fixing associations. Specific nodule activity (SNA) and the level of GS were correlated (r=0.90, p<0.05) for both cultivars at both harvests. GS activity was only 8 or 24% higher than SNA in nodules of Mexico 309 or Rio Tibagi cultivars, respectively, under conditions where substrate was not limiting. This suggests that early in the functioning of this symbiosis N assimilation by GS is the rate-limiting step in N2 fixation by these two bean cultivars, each with a different symbiotic efficiency. Phaseolus breeding programs that attempt to improve N2 fixation in beans should identify germplasm that expresses elevated levels of nodule-specific GS or GOGAT, and this material should be used along with effective R. leguminosarum bv. phaseoli strains that have already been selected, to determine superior host-microsymciont associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号