首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In fish, amphibians and mammals, gap junctions of some cells allow passage of elongate molecules as large as 18 kDa, while excluding smaller, less elongate molecules. Fluorescently labeled Calmodulin (17 kDa) and fluorescently labeled Troponin-C (18 kDa), when microinjected into oocytes of Danio rerio, Xenopus laevis or Mus domestica, were able to transit the gap junctions between these oocytes and the granulosa cells which surrounded them. Co-microinjected with these Ca2+-binding proteins, Texas-red-labeled dextran (10 kDa) remained in the microinjected cell. Osteocalcin (6 kDa), also a Ca2+-binding protein, but with a wide “V” shape proved unable to transit these gap junctions. Calmodulin, but not Troponin-C, was able to transit gap junctions of gonadotropin treated WB cells in culture. We show evidence that molecules as large as 18 kDa can pass through some vertebrate gap junctions, both homologous and heterologous, and that it is primarily molecular configuration which governs gap junctional permeability.  相似文献   

2.
Gap junctions of some vertebrates are capable of passing the elongate molecule, calmodulin, with a molecular weight 8-17 times greater than the previously recognized size limits. Fluorescently labeled calmodulin (FCaM) (17.34 kDa) microinjected into oocytes of ovarian follicles from an amphibian, Xenopus laevis, and from two species of teleost fish, Danio rerio (Zebrafish) and Oryzias latipes (Medaka), is shown to transit their gap junctions and enter the surrounding epithelial cells. Passage of FCaM was terminated when follicles were first treated with 1 mM octanol, a molecule known to down-regulate gap junctions. There was no FCaM detected in the surrounding medium, nor did epithelial cells become fluorescent when follicles were incubated in medium containing dye. Calmodulin is well known to modulate many cytoplasmic reactions; thus, its passage through gap junctions opens possibilities of additional means by which cells may be supplied with this signaling molecule, and by which their supply may be regulated.  相似文献   

3.
In ovarian follicles of Oncopeltus fasciatus, and of Xylocopa virginica, calmodulin (CaM) of epithelial cell origin is required by oocytes for endocytic uptake of yolk precursor molecules. Furthermore, this 17-19 kDa protein is normally transported to the oocytes via gap junctions. Downregulation of gap junctions by treatment with 1 mM octanol or separation of the epithelial cells from their oocytes terminated precursor uptake, and this activity could be rescued by microinjection of 60 microM CaM, but not by injections of incubation medium, nor solutions of other molecular species tested. That endogenous CaM is required was confirmed by incubating otherwise untreated follicles in physiological salt solution (PSS) containing either calmidazolium or W-7, both known antagonists of CaM. By radioimmunoprecipitation, we show that the epithelial cells surrounding an oocyte synthesized 15 times as much calmodulin as did the oocytes they encircled. Neither octanol-treated follicles nor denuded oocytes incubated in medium containing calmodulin were able to resume endocytosis, arguing against an extracellular route. However, fluorescently labeled calmodulin microinjected into oocytes is shown to have crossed through gap junctions, making epithelial cells distinctly fluorescent.  相似文献   

4.
Gap junctional transport of Calmodulin (CaM) from epithelial cells to insect oocytes is enhanced by alignment of the molecules via an electric field. It has recently been shown that CaM is needed for uptake of vitellogenins, is produced in the epithelial cells and reaches oocytes via gap junctions. For CaM to transit the gap junctions something must align these elongated molecules with the lumina of the gap junctions. This might be accomplished by the electric field that exists at the membrane of any cell with an Em of >0 mV. Fluorescently labeled CaM was injected into oocytes. At t=0, the epithelial cell/oocyte "fluorescence" ratio showed epithelial cells to be 24%+/-1.5% as bright as the injected oocyte. In follicles which maintained an electric field for one hour the epithelial cell/oocyte fluorescence ratio had risen to 79%+/-1.4%, while for follicles in which the field was cancelled by holding Em at 0 mV the ratio was only 45%+/-1.7%. After termination of the holding current follicles regained their original Em and their original electric field. At the end of a second hour of incubation the ratio had risen to 76%+/-1.2%, very close to what was observed in the untreated control follicles.  相似文献   

5.
Identification of the calmodulin binding domain of connexin 43   总被引:2,自引:0,他引:2  
Calmodulin (CaM) has been implicated in mediating the Ca(2+)-dependent regulation of gap junctions. This report identifies a CaM-binding motif comprising residues 136-158 in the intracellular loop of Cx43. A 23-mer peptide encompassing this CaM-binding motif was shown to bind Ca(2+)-CaM with 1:1 stoichiometry by using various biophysical approaches, including surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and NMR. Far UV circular dichroism studies indicated that the Cx43-derived peptide increased its alpha-helical contents on CaM binding. Fluorescence and NMR studies revealed conformational changes of both the peptide and CaM following formation of the CaM-peptide complex. The apparent dissociation constant of the peptide binding to CaM in physiologic K(+) is in the range of 0.7-1 microM. Upon binding of the peptide to CaM, the apparent K(d) of Ca(2+) for CaM decreased from 2.9 +/- 0.1 to 1.6 +/- 0.1 microM, and the Hill coefficient n(H) increased from 2.1 +/- 0.1 to 3.3 +/- 0.5. Transient expression in HeLa cells of two different mutant Cx43-EYFP constructs without the putative Cx43 CaM-binding site eliminated the Ca(2+)-dependent inhibition of Cx43 gap junction permeability, confirming that residues 136-158 in the intracellular loop of Cx43 contain the CaM-binding site that mediates the Ca(2+)-dependent regulation of Cx43 gap junctions. Our results provide the first direct evidence that CaM binds to a specific region of the ubiquitous gap junction protein Cx43 in a Ca(2+)-dependent manner, providing a molecular basis for the well characterized Ca(2+)-dependent inhibition of Cx43-containing gap junctions.  相似文献   

6.
Some properties of calmodulin(CaM)-binding proteins (CaMBPs) of the Ca(2+)-independent type were investigated in the synaptosomal membrane (SM) from rat brain using the [125I]CaM gel overlay method. When SM was prepared in the presence of Ca2+, Ca(2+)-independent CaM binding was decreased, whereas the Ca(2+)-dependent type was not altered. All Ca(2+)-independent-type CaMBPs were membrane-bound and scarcely present in the soluble fractions. When SM was heat-denatured, the 24/22.5-kDa CaMBPs could no longer be detected by [125]CaM binding and a new component with higher molecular mass (greater than 200 kDa) was shown to bind CaM in a Ca(2+)-independent manner. A possible effect of cAMP- and Ca2+/CaM-dependent phosphorylation on CaM binding was also examined.  相似文献   

7.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

8.
Demembranated euryhaline tilapia Oreochromis mossambicus sperm were reactivated in the presence of concentrations in excess of 10(-6) M Ca(2+). Motility features changed when Ca(2+) concentrations were increased from 10(-6) to 10(-5) M. Although the beat frequency did not increase, the shear angle and wave amplitude of flagellar beating increased, suggesting that the sliding velocity of microtubules in the axoneme, which represents dynein activity, rises with an increase in Ca(2+). Thus, it is possible that Ca(2+) binds to flagellar proteins to activate flagellar motility as a result of the enhanced dynein activity. One Ca(2+)-binding protein (18 kDa, pI 4.0), calmodulin (CaM), was detected by (45)Ca overlay assay and immunologically. A CaM antagonist, W-7, suppressed the reactivation ratio and swimming speed, suggesting that the 18 kDa Ca(2+)-binding protein is CaM and that CaM regulates flagellar motility. CaMKIV was detected immunologically as a single 48 kDa band in both the fraction of low ion extract of the axoneme and the remnant of the axoneme, suggesting that CaMKIV binds to distinct positions in the axoneme. It is possible that CaMKIV phosphorylates the axonemal proteins in a Ca(2+)/CaM-dependent manner for regulating the dynein activity. A (32)P-uptake in the axoneme showed that 48, 75, 120, 200, 250, 380, and 400 kDa proteins were phosphorylated in a Ca(2+)/CaM kinase-dependent manner. Proteins (380 kDa) were phosphorylated in the presence of 10(-5) M Ca(2+). It is possible that an increase in Ca(2+) induces Ca(2+)/CaM kinase-dependent regulation, including protein phosphorylation for activation/regulation of dynein activity in flagellar axoneme.  相似文献   

9.
Transient influx of Ca(2+) constitutes an early event in the signaling cascades that trigger plant defense responses. However, the downstream components of defense-associated Ca(2+) signaling are largely unknown. Because Ca(2+) signals are mediated by Ca(2+)-binding proteins, including calmodulin (CaM), identification and characterization of CaM-binding proteins elicited by pathogens should provide insights into the mechanism by which Ca(2+) regulates defense responses. In this study, we isolated a gene encoding rice Mlo (Oryza sativa Mlo; OsMlo) using a protein-protein interaction-based screening of a cDNA expression library constructed from pathogen-elicited rice suspension cells. OsMlo has a molecular mass of 62 kDa and shares 65% sequence identity and scaffold topology with barley Mlo, a heptahelical transmembrane protein known to function as a negative regulator of broad spectrum disease resistance and leaf cell death. By using gel overlay assays, we showed that OsMlo produced in Escherichia coli binds to soybean CaM isoform-1 (SCaM-1) in a Ca(2+)-dependent manner. We located a 20-amino acid CaM-binding domain (CaMBD) in the OsMlo C-terminal cytoplasmic tail that is necessary and sufficient for Ca(2+)-dependent CaM complex formation. Specific binding of the conserved CaMBD to CaM was corroborated by site-directed mutagenesis, a gel mobility shift assay, and a competition assay with a Ca(2+)/CaM-dependent enzyme. Expression of OsMlo was strongly induced by a fungal pathogen and by plant defense signaling molecules. We propose that binding of Ca(2+)-loaded CaM to the C-terminal tail may be a common feature of Mlo proteins.  相似文献   

10.
The ubiquitin-proteasome pathway is believed to selectively degrade post-synthetically damaged proteins in eukaryotic cells. To study this process we used calmodulin (CaM) as a substrate because of its importance in cell regulation and because it acquires isoaspartyl residues in its Ca(2+)-binding regions both in vivo and after in vitro "aging" (incubation for 2 weeks without Ca(2+)). When microinjected into Xenopus oocytes, in vitro aged CaM was degraded much faster than native CaM by a proteasome-dependent process. Similarly, in HeLa cell extracts aged CaM was degraded at a higher rate, even though it was not conjugated to ubiquitin more rapidly than the native species. Ca(2+) stimulated the ubiquitination of both species, but inhibited their degradation. Thus, for CaM, ubiquitination and proteolysis appear to be dissociated. Accordingly, purified muscle 26 S proteasomes could degrade aged CaM and native Ca(2+)-free (apo) CaM without ubiquitination. Addition of Ca(2+) dramatically reduced degradation of the native molecules but only slightly reduced the breakdown of the aged species. Thus, upon Ca(2+) binding, native CaM assumes a non-degradable conformation, which most of the age-damaged species cannot assume. Thus, flexible conformations, as may arise from age-induced damage or the absence of ligands, can promote degradation directly by the proteasome without ubiquitination.  相似文献   

11.
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication began within 10 min of removal of the peptides, with inhibition totally reversed by 20-40 min. The peptides were shown to be more effective in inhibiting Ca(2+) waves than glycyrrhetinic acid or oleamide. Inhibition of intercellular Ca(2+) waves by connexin mimetic peptides did not affect the Ca(2+) response to extracellular ATP. Although the intracellular Ca(2+) response of tracheal epithelial cells to ATP was greatly reduced by either pretreatment with high doses of ATP or application of apyrase, mechanically stimulated intercellular Ca(2+) signaling was not affected by these agents. We conclude that connexin mimetic peptides are effective and reversible inhibitors of gap junctional communication of physiologically significant molecules that underlie Ca(2+) wave propagation in tracheal epithelial cells and propose a potential mechanism for the mode of action of mimetic peptides.  相似文献   

12.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

13.
T Arazi  G Baum  W A Snedden  B J Shelp    H Fromm 《Plant physiology》1995,108(2):551-561
We previously provided what to our knowledge is the first evidence that plant glutamate decarboxylase (GAD) is a calmodulin (CaM)-binding protein. Here, we studied the GAD CaM-binding domain in detail. A synthetic peptide of 26 amino acids corresponding to this domain forms a stable complex with Ca2+/CaM with a 1:1 stoichiometry, and amino acid substitutions suggest that tryptophan-485 has an indispensable role in CaM binding. Chemical cross-linking revealed specific CaM/GAD interactions even in the absence of Ca2+. However, increasing KCI concentrations or deletion of two carboxy-terminal lysines abolished these interactions but had a mild effect on CaM/GAD interactions in the presence of Ca2+. We conclude that in the presence of Ca(2+)-hydrophobic interactions involving tryptophan-485 and electrostatic interactions involving the carboxy-terminal lysines mediate CaM/GAD complex formation. By contrast, in the absence of Ca2+, CaM/GAD interactions are essentially electrostatic and involve the carboxy-terminal lysines. In addition, a tryptophan residue and carboxy-terminal lysines are present in the CaM-binding domain of an Arabidopsis GAD. Finally, we demonstrate that petunia GAD activity is stimulated in vitro by Ca2+/CaM. Our study provides a molecular basis for Ca(2+)-dependent CaM/GAD interactions and suggests the possible occurrence of Ca(2+)-independent CaM/GAD interactions.  相似文献   

14.
15.
Li S  Xie L  Ma Z  Zhang R 《The FEBS journal》2005,272(19):4899-4910
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism.  相似文献   

16.
The mechanism of Ca(2+)-signaling in the protozoan parasite Entamoeba histolytica is yet to be understood as many of the key regulators are still to be identified. E. histolytica encodes a number of multi-EF-hand Ca(2+)-binding proteins (EhCaBPs). Functionally only one of these molecules, EhCaBP1, has been characterized to date. The calmodulin-like protein from E. histolytica (abbreviated as EhCaM or EhCaBP3) is a 17.23 kDa monomeric protein that shows maximum sequence identity with heterologous calmodulins (CaMs). Though CaM activity has been biochemically shown in E. histolytica, there are no reports on the presence of a typical CaM. In an attempt to understand the structural and functional similarity of EhCaM with CaM, we have determined the three-dimensional (3D) solution structure of EhCaM using NMR. The EhCaM has a well-folded N-terminal domain and an unstructured C-terminal counterpart. Further, it sequentially binds only two calcium ions, an unusual mode of Ca(2+)-binding among the known CaBPs, notably both in the N-terminal domain of EhCaM. Further, EhCaM is present in the nucleus in addition to the cytoplasm as detected by immunofluorescence staining, unlike other EhCaBPs that are detected only in the cytoplasm. Therefore, this protein is likely to have a different function. The presence of unusual and a diverse set of CaBPs in E. histolytica suggests a distinct Ca(2+)-signaling process in E. histolytica. The results reported here help in understanding the structure-function relationship of CaBPs including their Ca(2+)-binding properties.  相似文献   

17.
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such opposing effects on Ca(v)1.2 inactivation is unknown. Here, we identified molecular determinants in the alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2) that distinguish the effects of CaBP1 and CaM on inactivation. Although both proteins bind to a well characterized IQ-domain in the cytoplasmic C-terminal domain of alpha(1)1.2, mutations of the IQ-domain that significantly weakened CaM and CaBP1 binding abolished the functional effects of CaM, but not CaBP1. Pulldown binding assays revealed Ca(2+)-independent binding of CaBP1 to the N-terminal domain (NT) of alpha(1)1.2, which was in contrast to Ca(2+)-dependent binding of CaM to this region. Deletion of the NT abolished the effects of CaBP1 in prolonging Ca(v)1.2 Ca(2+) currents, but spared Ca(2+)-dependent inactivation due to CaM. We conclude that the NT and IQ-domains of alpha(1)1.2 mediate functionally distinct interactions with CaBP1 and CaM that promote conformational alterations that either stabilize or inhibit inactivation of Ca(v)1.2.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

19.
This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca(2+) waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca(2+)](i) associated with Ca(2+) waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca(2+)-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca(2+) waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca(2+)](i) changes were characterized by initiating Ca(2+) puffs associated with the perinuclear ER. By contrast, in Cx-GFP-transfected cells and in the presence of apyrase, [Ca(2+)](i) changes were propagated without initiating perinuclear Ca(2+) puffs and were communicated between cells at the sites of the Cx-GFP gap junctions. The efficiency of Cx expression determined the extent of Ca(2+) wave propagation. These results demonstrate that intercellular Ca(2+) waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other.  相似文献   

20.
Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号