首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
1989—1991年,在中国科学院内蒙古草原生态系统定位研究站,采用土柱称重法,对该站周围的主要植物群落蒸发蒸腾进行了初步研究,结果如下:1.羊草群落蒸发蒸腾的季节变化(1989) 5月份草原返青,羊草群落蒸腾很快达到0.441  相似文献   

2.
几个主要地面因子对草原群落蒸发蒸腾的影响   总被引:16,自引:0,他引:16       下载免费PDF全文
 在中国科学院内蒙古草原生态系统定位研究站,采用“土柱称重法”,观测了几个主要地面因子对草原群落蒸发蒸腾的影响。主要研究结果如下:1.土壤因子的影响:(1)在通常情况下,草原群落蒸发、蒸腾及蒸散均随土壤水分增加而增大;当土壤水分过多时,群落蒸腾由于植物受涝而降低。(2)在低土壤含水量条件下,群落蒸发随土壤粘粒含量增加呈线性降低;在高土壤含水量条件下,群落蒸发随土壤粘粒含量增加而升高。(3)不同土壤含水量的群落蒸发,均随土壤紧实度增大而升高,并先后达最高值。土壤含水量愈低,蒸发达最高值愈滞后。 2.放牧因素的影响:群落蒸腾与牧压呈线性负相关;群落蒸发与牧压呈线性正相关。群落生物量随牧压增大而降低是导致群落蒸发和蒸腾与牧压呈正、负相关的主要原因。 3.退化群落及其恢复群落的蒸发蒸腾:群落退化导致群落蒸发升高,蒸腾降低;相应的群落恢复导致群落蒸发降低,蒸腾升高。在—定程度上,群落退化及其恢复演替虽然能明显改变群落T/E值1),但却不会引起群落蒸散值的明显变化。  相似文献   

3.
 利用内蒙古羊草草原(Leymus chinensis)生态系统通量观测站的气象数据、野外实测和MODIS叶面积指数(Leaf area index, LAI), 应用基于生态系统过程的VIP(Vegetation interface process)模型, 以半小时为步长, 模拟分析了羊草草原生态系统2003~2005年(分别为平水年、平水年和干旱年)蒸散及其分量的变化过程。通过与通量数据对比, VIP模型能够很好地模拟羊草草原生态系统的蒸散过程(R2 = 0.80), 在峰值大小和变化趋势上, 模拟值与实测值有较好的一致性。模拟结果显示: 3年蒸散量分别为337、338和223 mm; 在降水相对充沛的2003和2004年, 蒸腾量为192和171 mm, 而降水相对较少的2005年, 蒸腾量仅为96 mm; 年平均蒸腾和蒸发对蒸散的贡献基本持平; 生长季蒸散占全年的83%, 6月开始, 蒸腾大于蒸发, 蒸散和蒸腾的月总值均在7、8月达到最大值,两月蒸散占全年的43%。LAI是影响蒸散的主要因素, 其次是降水, 而净辐射对蒸散的影响较小。在生长季, 蒸发的季节变化平缓, 蒸散的差异主要体现在蒸腾的差异。  相似文献   

4.
羊草群落水分状况的初步研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文采用笔者自行设计和组装的人工气候箱装置,对天然羊草(Aneurolepidium chinense)群落的水分状况进行了研究,结果表明,在生长季各时期的晴天条件下,羊草群落蒸腾、蒸散速率的日进程曲线均为双峰型。群落的蒸腾、蒸散速率与太阳总辐射强度和气温呈正相关,与空气相对湿度呈负相关。群落的无效水分散失比率与蒸腾速率呈负相关。群落中植物的蒸腾强度,以开花期最高,为1.156g/cm2(叶面积)/d;整个群落的蒸腾速率在种子蜡熟期达到最高值,为4861.07g/m2(地面)/d。群落的蒸散速率在6月份最高,达6454.36 g/m2/d。群落月蒸散、蒸腾耗水量的最大值分别出现在6月份和8月份,各为125.9mm和83.9mm。在生长季中,群落的总耗水量与总降水量基本相等,但二者的季节消长不同步。在植物生长发育早期的6月份,水分亏缺严重,使群落对后期充沛的降水不能有效利用,群落生产力低下。  相似文献   

5.
净生态系统生产力(net ecosystem productivity,NEP)是反映生态系统碳源汇功能的重要指标。本研究选取内蒙古锡林河流域的贝加尔针茅群落、大针茅群落、克氏针茅群落和羊草群落为对象,利用BIOME-BGC模型模拟了4个草地群落年际间和年内逐日NEP动态变化,分析了4个草地群落对降水量的响应特征和可能机制,并且探讨气候变化背景下4个草地群落水分胁迫系数、降水利用率和碳转化效率的变化规律。结果表明:1954—2012年贝加尔针茅群落、大针茅群落、克氏针茅群落和羊草群落的多年平均NEP分别为11.41、-7.82、-5.03和9.30 g C·m-2·a-1。总体来看,4种草地群落多年平均日NEP的年内季节动态均呈先释放、后固碳、再释放的变化特征。4种草地群落多年平均水分胁迫系数由高到低分别为:贝加尔针茅羊草大针茅克氏针茅;多年平均降水利用效率由高到低分别为:贝加尔针茅克氏针茅大针茅羊草;多年平均碳素转化效率由高到低分别为:贝加尔针茅克氏针茅大针茅羊草。4种草地群落NEP与年降水量均存在显著的相关性,NEP为0时,4种草地群落年降水量平均值为295.76 mm,说明在年降水量大于该值时NEP多为正值,而小于该值时NEP多为负值。  相似文献   

6.
锡林河流域两类植物群落土壤呼吸特征的比较   总被引:5,自引:0,他引:5  
采用碱液吸收法对锡林河流域一个半干旱典型草原群落的土壤呼吸进行了5个月的野外测定,并对其与气候因子和生物量之间的关系进行了分析。另选择了锡林河岸边的一个沼泽化草甸群落作为对比来研究土壤湿度和植被类型对土壤呼吸的影响。主要结果包括:1)两个群落土壤呼吸的季节动态基本一致,均出现了两个峰值,其中草原群落和草甸群落土壤呼吸速率的变化范围分别为312.8~1 738.9 mg C·m-2·d-1 和354.6~2 235.6 mg C·m-2·d-1。草甸群落的土壤呼吸速率明显高于草原群落,它们的日平均土壤呼吸速率分别为1 349.6 mg C·m-2·d-1和785.9mg C·m-2·d-1; 2)在草原群落中,土壤呼吸速率与土壤湿度的相关性比其与温度的关系更加显著,而在草甸群落正好相反,反映出这两种气候因子在不同生境中起着不同的作用。根据土壤呼吸与气温之间的回归关系外推出2001年生长季草原群落和草甸群落的土壤呼吸量分别为142.4 g C/m2 和 236.1 g C/m2;3)在草甸群落中,地上总生物量与土壤呼吸速率之间没有显著的相关关系,而地上部活体生物量与土壤呼吸速率之间则存有很显著的幂函数关系。在草原群落中,土壤呼吸速率与地上活体生物量或地上总生物量的相关性均很弱。  相似文献   

7.
内蒙古典型草原几种不同植物的生长动态比较   总被引:3,自引:0,他引:3  
张彩琴  杨持 《生态学杂志》2007,26(11):1712-1718
选择内蒙古典型草原羊草 大针茅群落中的优势植物羊草、大针茅、冰草和冷蒿,采用多种数量化指标,分别比较一个生长季内的生长动态、绝对生长速率(AGR)、相对生长速率(RGR)。结果表明:植物地上生物量均呈S形增长,8月中旬达到最大值;主要生长季内受降水不足的抑制作用依次为羊草>冰草>大针茅>冷蒿。羊草和冰草AGR均呈双峰曲线,大针茅呈三峰曲线,冷蒿呈单峰曲线。生长主要集中在中前期,AGR大小依次为冷蒿(0.099g.株-1.d-1)>大针茅(0.029g.株-1.d-1)>羊草(0.003g.株-1.d-1)>冰草(0.002g.株-1.d-1)。RGR与AGR有相似的季节性变化,其中羊草、冰草、冷蒿RGR均呈单峰曲线,大针茅呈三峰曲线;生长季初期RGR均表现出最高,生长潜能较大,7月末至8月中旬呈现负值;4种植物的最大净积累效率依次为冷蒿(0.108g.株-1.d-1.g-1)>大针茅(0.064g.株-1.d-1.g-1)>羊草(0.055g.株-1.d-1.g-1)>冰草(0.042g.株-1.d-1.g-1)。不同生活型的生长曲线及生长速率均存在较大差异,但同属于根茎型的羊草和冰草生长动态曲线明显相似。  相似文献   

8.
内蒙古呼伦贝尔草原土壤氨氧化细菌多样性及群落结构   总被引:3,自引:0,他引:3  
Wendu RL  Li G  Yang DL  Zhang JN  Yi J 《应用生态学报》2011,22(4):929-935
采用聚合酶链式反应-变性梯度凝胶电泳技术及扩增产物序列分析方法,研究了呼伦贝尔5种草地类型(线叶菊草原、贝加尔针茅草原、羊草草原、大针茅草原、克氏针茅草原)土壤氨氧化细菌多样性及群落结构特征.研究表明:不同草地类型间土壤氨氧化细菌群落结构组成差异显著,相似性均低于50%.线叶菊草原土壤氨氧化细菌群落多样性最高,其次是贝加尔针茅草原、羊草草原和克氏针茅草原,大针茅草原最低.5种草地类型土壤氨氧化细菌均以Nitrosospira cluster 3为优势种群,此外还发现有Nitrosospira cluster 1、2、4和Nitrosomonas.线叶菊草原土壤氨氧化细菌群落组成较其他草地类型复杂,而羊草草原和大针茅草原群落组成较简单.经相关性分析,土壤含水量、土壤全氮、有机碳、土壤C/N与土壤氨氧化细菌群落多样性显著正相关(P<0.05).  相似文献   

9.
羊草草原不同退化阶段群落蒸散量比较   总被引:1,自引:0,他引:1  
运用微型蒸渗仪法对重度、中度和无退化羊草草原群落的日蒸散量进行了测定,并对其与土壤含水量、日均气温、大气湿度等因子的相关关系进行了分析。结果表明:各群落的日蒸散量均随着生长季推移逐渐增大,于6月中旬至7月中旬达到最大,而后逐渐降低;表层土壤含水量和日均气温是影响群落日蒸散量的主要因子,这2个因子与群落日蒸散量的回归关系极显著;群落生长季的累积蒸散量随着羊草草原群落的退化程度加深逐渐降低,且该值均低于生长季累积降水量。  相似文献   

10.
松嫩平原针茅草原的特征及其生态地理规律的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
 经考察,松嫩平原的针茅草原主要有4个群落类型:贝加尔针茅(Stipa baicalensis)群落、贝加尔针茅+线叶菊(Filifolium sibiricum)群落、大针茅(S.grandis)+贝加尔针茅群落和大针茅群落。通过对针茅草原各类型基本结构特征和生态地理分布规律的分析,并根据它们所反映的水土条件的差异,认为贝加尔针茅群落为该地区的地带性植被。在中国温带草原区划中的位置属于草甸草原,应与内蒙古高原典型草原分开,成为一个独立的分区  相似文献   

11.
该文比较研究了内蒙古羊草草原和大针茅草原放牧演替系列经过20a (1985~2005年) 放牧, 利用群落组成与结构的变化分析了这两个放牧演替系列上15个植物群落的变化趋势, 并依此探讨长期放牧对草原生态系统结构和功能的影响。结果表明:在大针茅 (Stipa grandis) 牧压梯度系列上, 群落仍以大针茅群系为主, 冷蒿 (Artemisia frigida) 为建群种的群落消失;在羊草 (Leymus chinensis) 牧压梯度系列上, 羊草和冷蒿不再是建群种, 被西伯利亚羽茅 (Achnatherum sibiricum) 、大针茅、冰草 (Agropyron cristatum) 和糙隐子草 (Cleistogenes squarrosa) 所替代。综合两个牧压梯度系列的研究结果得出以下基本结论:长期过度放牧进一步加速了草原群落的退化进程, 但退化草原具有较高的恢复弹性, 控制放牧使部分群落得到一定程度的恢复。同一植物群落时间变化, 或不同演替阶段的植物群落在空间序列上的位移程度主要取决于放牧史和利用强度。过去20a中, 特别是2003年以来草原管理政策的改变并没有导致该区域草地的整体退化, 而是在一定程度上有利于草地的恢复。  相似文献   

12.
锡林河河漫滩草甸群落的结构与生产力及其排序   总被引:1,自引:0,他引:1       下载免费PDF全文
 锡林河河漫滩主要草甸群落的植物组成、群落构成规律、地上植物量、群落间生态关系的研究表明:1)踏头草甸以中间型荸荠(Eleocharis intersita)、无脉苔草(Carex enervis)、巨序剪股颖(Agrostis gigantea)和湿中生杂类草共同建群,其地上植物量为445.64gDM·m-2,是该区草原群落的2—4倍;密花凤毛菊(Saussurea acuminata)杂类草草甸的地上植物量为3584.50gFM·m-2(鲜重);马蔺(Iris lactea)杂类草草甸的地上现存量为1444.02gFM·m-2(鲜重)。2)与该区草原群落相比,草甸群落或没有单种建群植物,或单种建群植物的作用不很突出。说明了草甸优越的生境可满足多种植物共同充分生长。3)河漫滩不同草甸群落的排序表明:在积水生境中沼泽植被的外围、较为湿润的地段上分布着以莎草科植物为主的莎草(苔草)草甸;中度湿润的地段分布着以禾本科植物为主的禾草草甸;而相对较干的地段分布着以双子叶植物为主的杂类草草甸。  相似文献   

13.
植物表皮蜡质中的饱和链烷作为内源指示剂广泛用于评价放牧家畜的食性和食量, 但用于天然草原蝗虫食性的评价研究较少。为了探讨天然草原蝗虫的食性及其生态位变化, 本研究以内蒙古天然草原为研究对象, 于2003年7-8月沿降水梯度选择3种典型植物群落(小针茅Stipa klemenzii、 羊草Leymus chinensis和大针茅Stipa grandis群落), 在每个植物群落不同放牧压力下小区随机做20个植被样方, 样方内植物齐地面刈割, 测定其地上生物量和物种多样性, 取主要植物种测定其链烷模式, 同时采集放牧小区优势蝗虫种亚洲小车蝗Oedaleus asiaticus的粪便, 测定其链烷模式, 运用链烷技术评价蝗虫的食性及其营养生态位。结果表明: 不同植物群落中优势牧草种类及其比例不同, 其链烷模式存在种间差异, 链烷技术可以评价亚洲小车蝗的食性。亚洲小车蝗的食性在不同植物群落及不同放牧压力下存在显著的差异, 在羊草和大针茅群落中, 亚洲小车蝗是禾草采食者, 主要采食羊草和糙隐子草Cleistogenes squarrosa, 且与绵羊的营养生态位重叠指数较低, 分别为0.0619和0.0172; 在小针茅群落中亚洲小车蝗是杂类草采食者, 主要采食无芒隐子草Cleistogenes songorica、 猪毛菜Salsola collina和小针茅, 且与绵羊的营养生态位重叠指数较高, 达到0.1815。因此, 放牧不仅改变了群落的植物种类组成, 而且直接影响了亚洲小车蝗的食物组成, 二者对食物资源利用存在一定程度的竞争。  相似文献   

14.
在两个具有代表性的牧压梯度上,对羊草草原和大针茅草原的群落结构与牧压的关系借助模糊聚类的方法进行分析,揭示了不同牧压下植物群落的分异和不同群落在重牧压下的趋同,其总模式是:大针茅草原—持续牧压——→冷蒿草原 羊草草原—持续牧压———→冷蒿草原 把“群落趋同”的概念广延到放牧退化演替即次生逆向演替的生态学范畴。  相似文献   

15.
 根据内蒙古典型草原地带的羊草+大针茅草原退化变型一冷蒿群落封育12年(1983—1994)的动态监测数据进行分析,对群落恢复演替轨迹取得以下认识: 1.依据群落优势种的更替及主分量分析结果可将恢复演替过程划分为冷蒿优势阶段、冷蒿+冰草阶段、冰草优势阶段、羊草优势阶段。 2;退化草原群落在恢复演替过程中,群落生产力的变化表现出阶梯式跃变和亚稳态阶面相间的特点。第一次跃变发生在1984年,上升到第二个阶面,第二次跃变发生在1990年,进入了第三个阶面,已接近于原生群落的生产力。 3.群落生产力与水资源量的关系因恢复演替阶段不同而异。第一亚稳态时期,群落地上现存生物量大体处于166g·m-2的水平上,生长季降水量达176mm以上时,增加降水对群落生产力的提高不发生显著影响。第二亚稳态时期,群落生物量与降水量之间的相关性显著。可推算出群落于物质生产用水量介于1.1~1.6mm·g-1之间。此值在1.1mm·g-1时,群落对水资源的利用效率最高,而在1.6mm·g-1时群落生物量达到最大值。 4.在恢复演替进程中,群落密度的位点常数约为271.5株·m-2,循此常数上下波动,表现出拥挤与稀疏交替发生的过程,构成了恢复演替的节奏性变化。群落生物量的跃变与亚稳态的形成,以及群落密度的拥挤与稀疏交替作用是群落恢复演替的内在机制。恢复演替的速度,到第10年发生了1.78个半变的生态距离。5.草原退化群落恢复演替过程中,按照其节奏性及生产力跃变与亚稳态的规律,调控放牧利用强度或采取技术措施,调节群落拥挤和稀疏的交替过程可加速恢复演替进程。  相似文献   

16.
He N  Han X  Yu G  Chen Q 《PloS one》2011,6(11):e26506
An understanding of the factors controlling plant community composition will allow improved prediction of the responses of plant communities to natural and anthropogenic environmental change. Using monitoring data from 1980 to 2009, we quantified the changes in community composition in Leymus chinensis and Stipa grandis dominated grasslands in Inner Mongolia under long-term grazing-exclusion and free-grazing conditions, respectively. We demonstrated that the practice of long-term grazing exclusion has significant effects on the heterogeneity, the dominant species, and the community composition in the two grasslands. The community composition of L. chinensis and S. grandis grasslands exhibited directional changes with time under long-term grazing exclusion. Under free grazing, the L. chinensis community changed directionally with time, but the pattern of change was stochastic in the S. grandis community. We attributed the divergent responses to long-term grazing exclusion in the S. grandis and L. chinensis grasslands to litter accumulation and changes in the microenvironment after grazing exclusion, which collectively altered the growth and regeneration of the dominant species. The changes in the grazed grasslands were primarily determined by the selective feeding of sheep during long-term heavy grazing. Overall, the responses of the community composition of the Inner Mongolian grasslands to long-term grazing exclusion and heavy grazing were divergent, and depended primarily on the grassland type. Our findings provide new insights into the role of grazing in the maintenance of community structure and function and therefore have important implications for grassland management.  相似文献   

17.
 草地各退化等级群落反射波谱特征之间的差异性大小与草地类型和生长季节有关,羊草(Leymus chinensis)草原不同退化等级群落反射波谱特征之间的差异在6月底最为显著,在5月底的差异最不明显, 大针茅(Stipa grandis)草原不同退化等级群落反射波谱特征之间在7月底、8月底的差异最为显著,在5月底和6月底的差异最不明显。植被指数(NDVI)在5月底、6月底和9月底在各草地类型的不同退化等级群落中都无显著差异,而在7月底、8月底差异显著程度也小于各波段反射率。主分量分析(PCA)和模式识别分析结果表明:对于羊草草原退化生态系列的不同退化等级群落分类效果最佳的鉴别函数是蓝光、红光和近红外波段反射率的线性组合,最佳分类时间在6月底,平均错误概率仅为0.7%,5月底进行分类效果最差,平均错误概率为12%左右,7月底、8月底、9月底的分类效果居中;对大针茅草原退化生态系列的不同退化等级群落分类效果最佳的鉴别函数是蓝光、绿光和近红外波段3个反射率的线性组合,在7月底和8月底进行分类效果最好,分类的平均错误概率为4%左右,9月底的分类效果最差,平均错误概率达10%左右。  相似文献   

18.
中国西北地区通过大量种植中间锦鸡儿(Caragana liouana)进行生态治理, 在荒漠草原带上形成人工灌丛景观, 改变了生态系统的结构和功能, 影响到地-气水汽循环过程, 研究该人工灌丛群落的蒸散特征, 对揭示其生态水文效应和指导地方生态治理实践具有重要意义。该文以宁夏盐池荒漠草原带上的人工灌丛群落为例, 利用茎流-蒸渗仪法测定了2018年5-8月的灌木蒸腾和丛下蒸散, 并分析了环境因子对人工灌丛群落蒸散的影响。结果表明: (1)茎流-蒸渗仪法所测的群落蒸散与水量平衡法、涡度相关法得到的群落蒸散有较好的一致性, 茎流-蒸渗仪法能适用于荒漠草原带人工灌丛群落蒸散及其组分结构的测定; (2)观测期内晴天的灌木蒸腾速率和丛下蒸散速率日变化趋势相近, 均为单峰曲线, 群落蒸散主要发生在日间, 但灌丛最大蒸腾速率的出现时间比丛下蒸散最大速率的出现时间晚1 h; (3) 5-8月间灌木累积蒸腾为83.6 mm, 日平均蒸腾量为0.7 mm·d-1, 季节变化呈抛物线状; 同期丛下累积蒸散为182.5 mm, 日平均蒸散量为1.5 mm·d-1; 丛下蒸散明显大于灌木蒸腾; (4)观测期间人工灌丛群落累积蒸散266.1 mm, 而同期的降水量为222.6 mm, 陆面水分收支处于亏缺状态; (5)净辐射是影响蒸散最主要、最直接的驱动因素, 且能够影响其他因子进而对人工灌丛群落蒸散产生作用。综上, 人工灌丛引发荒漠草原地带陆面水分收支亏缺的现象, 在生态恢复与重建中须引起注意。  相似文献   

19.
松嫩平原南部植物群落的分类和排序   总被引:10,自引:2,他引:8       下载免费PDF全文
 松嫩平原南部的气候具有温带半湿润大陆性的特点。地带性植被为草甸草原。由于小地形起伏,土壤盐碱和水分含量有差异,影响植物的分布和组合,形成不同的群落。本文采用定性和定量相结合的方法,对该地区的植物群落进行了分类和排序,划分了11个群落类型,归为5类生态组合。通过样地和群落的排序说明植被既是连续的,又是间断的,同时明显看出植物群落随着土壤盐碱和水分含量的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号