首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
There is substantial variability among populations of the same species in basic features such as abundance or niche breadth, and it is unclear to what extent these are true species traits as opposed to the product of local environmental factors. In parasites, abundance and niche breadth, i.e. host specificity, show repeatability among different populations of the same species, but may also be influenced by external forces, depending on the parasite taxa studied. We tested whether the abundance and host specificity of gamasid mites parasitic on small mammals from 26 different geographic regions of the Palaearctic, are species-specific or instead determined by host identity and/or parameters of the biotic and abiotic environment. Values of abundance and host specificity (measured as the number of host species used) were significantly more similar among populations of the same mite species than among different mite species; despite also showing consistency within particular host species or regions independently of mite species identity, both abundance and the number of host species used appear to be true mite species traits. In contrast, the taxonomic distinctness of host species used by a mite showed little repeatability among populations of the same mite species, and appears mostly determined by the local pool of available host species. Within given mite species, all three variables (abundance, number of host species used, and their taxonomic distinctness) covaried to some extent with one or more environmental factors (e.g., nature of the local host assemblage, temperature, precipitation) across geographical regions, but there was no universal pattern among results from different mite species. These results are similar to those obtained earlier on other taxa, e.g. fleas, and suggest that there are general laws acting on spatial patterns of parasite abundance and host specificity.  相似文献   

2.
Within a community, the abundance of any given species depends in large part on a network of direct and indirect, positive and negative interactions with other species, including shared enemies. In communities where experimental manipulations are often impossible (e.g., parasite communities), census data can be used to evaluate the strength or frequency of positive and negative associations among species. In ectoparasite communities, competitive associations can arise because of limited space or food, but facilitative associations can also exist if one species suppresses host immune defenses. In addition, positive associations among parasites could arise merely due to shared preferences for the same host, without any interaction going on. We used census data from 28 regional surveys of gamasid mites parasitic on small mammals throughout the Palaearctic, to assess how the abundance of individual mite species is influenced by the abundance and diversity of other mite species on the same host. After controlling for several confounding variables, the abundance of individual mite species was generally positively correlated with the combined abundances of all other mite species in the community. This trend was confirmed by meta-analysis of the results obtained for separate mite species. In contrast, there were generally no consistent relationships between the abundance of individual mite species and either the species richness or taxonomic diversity of the community in which they occur. These patterns were independent of mite feeding mode. Our results indicate either that synergistic facilitative interactions among mites increase the host’s susceptibility to further attacks (e.g., via immunosuppression) and lead to different species all having increased abundance on the same host, or that certain characteristics make some host species preferred habitats for many parasite species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Bordes F  Morand S 《Parasitology》2008,135(14):1701-1705
Studies investigating parasite diversity have shown substantial geographical variation in parasite species richness. Most of these studies have, however, adopted a local scale approach, which may have masked more general patterns. Recent studies have shown that ectoparasite species richness in mammals seems highly repeatable among populations of the same mammal host species at a regional scale. In light of these new studies we have reinvestigated the case of parasitic helminths by using a large data set of parasites from mammal populations in 3 continents. We collected homogeneous data and demonstrated that helminth species richness is highly repeatable in mammals at a regional scale. Our results highlight the strong influence of host identity in parasite species richness and call for future research linking helminth species found in a given host to its ecology, immune defences and potential energetic trade-offs.  相似文献   

4.
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free‐living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well‐sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.  相似文献   

5.
6.
Within any parasite species, variation among populations in standard infection parameters (prevalence, intensity and abundance) is an accepted fact. The proportion of hosts infected and the mean number of parasites per host are not fixed values across the entire geographic range of any parasite species. The question is whether this inter-population variation occurs within a narrow, species-specific range and is thus driven mainly by the biological features of the parasite, or whether it is substantial and unpredictable, leaving population parameters at the mercy of local conditions. Here, the repeatability of estimates of prevalence, intensity and abundance of infection was assessed across populations of the same parasite species, for 77 metazoan parasite species of Canadian freshwater fishes. Overall, parameter values from different populations of the same parasite species were more similar to each other and more different from those of other species, than expected by chance alone. Much of the variation in parameter values in the dataset was associated with differences between parasite species, rather than with differences among populations within species. This was particularly true for intensity and abundance of infection; in contrast, prevalence values, while somewhat repeatable among populations of the same species, still showed considerable variation. Among the higher taxa investigated (monogeneans, trematodes, cestodes, nematodes, acanthocephalans, copepods), there was no evidence that species of one taxon display intrinsically greater variation in population parameters than species of other taxa. Overall, the results suggest that intensity and abundance of infection are real species characters, though somewhat variable. This conclusion supports the view that the biological features of parasite species can potentially override local environmental conditions in driving parasite population dynamics.  相似文献   

7.
The effects of host‐related, parasite‐related and environmental factors on the diversity and abundance of two ectoparasite taxa, fleas (Insecta: Siphonaptera) and mites (Acari: Mesostigmata), parasitic on small mammals (rodents and marsupials), were studied in different localities across Brazil. A stronger effect of host‐related factors on flea than on mite assemblages, and a stronger effect of environmental factors on mite than on flea assemblages were predicted. In addition, the effects of parasite‐related factors on flea and mite diversity and abundance were predicted to manifest mainly at the scale of infracommunities, whereas the effects of host‐related and environmental factors were predicted to manifest mainly at the scale of component and compound communities. This study found that, in general, diversity and abundance of flea and mite assemblages at two lower hierarchical levels (infracommunities and component communities) were affected by host‐related, parasite‐related and environmental factors, and compound communities were affected mainly by host‐related and environmental factors. The effects of factors differed between fleas and mites: in fleas, community structure and abundance depended on host diversity to a greater extent than in mites. In addition, the effects of factors differed among parasite assemblages harboured by different host species.  相似文献   

8.
Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi-species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale-specific.  相似文献   

9.
Parasite life-history characteristics, the environment, and host defenses determine variation in parasite population parameters across space and time. Parasite abundance and distribution have received little attention despite their pervasive effects on host populations and community dynamics. We used analyses of variance to estimate the variability of intensity, prevalence, and abundance of 4 species of lice (Insecta: Phthiraptera) infecting Galápagos doves and Galápagos hawks and 1 haemosporidian parasite (Haemosporida: Haemoproteidae) infecting the doves across island populations throughout their entire geographic ranges. Population parameters of parasites with direct life cycles varied less within than among parasite species, and intensity and abundance did not differ significantly across islands. Prevalence explained a proportion of the variance (34%), similar to infection intensity (33%) and parasite abundance (37%). We detected a strong parasite species-by-island interaction, suggesting that parasite population dynamics is independent among islands. Prevalence (up to 100%) and infection intensity (parasitemias up to 12.7%) of Haemoproteus sp. parasites varied little across island populations.  相似文献   

10.
Several studies have searched for the key forces behind the diversification of parasite assemblages over evolutionary time. All of these studies have used parasite species richness as their measure of diversity, thus ignoring the relatedness among parasite species and the taxonomic structure of the assemblages. This information is essential, however, if we want to elucidate which processes have caused an assemblage of parasites to acquire new species. Here, we performed a comparative analysis across 110 species of mammalian hosts in which we evaluated the effects of four host traits (body mass, population density, geographic range, and basal metabolic rate) on the diversity of their assemblages of helminth endoparasites. As measures of diversity, we used parasite species richness, as well as the average taxonomic distinctness of the assemblage and its variance; the latter measures are based on the taxonomic distance between two parasite species, computed across all possible species pairs in an assemblage. Unlike parasite species richness, both the average taxonomic distinctness and its variance were unaffected by the number of hosts examined. These two measures of parasite diversity also proved highly repeatable among host populations of the same mammalian species; in contrast, parasite species richness was unreliable as a species character, as it varied as much within a host species than among different host species. Using phylogenetically independent contrasts, and correcting for potential confounding variables, we found that host population density correlated positively with parasite species richness. There were, however, no other relationships between any of the four host traits investigated and either of our measures of parasite diversity. The processes facilitating the taxonomic diversification of parasite assemblages thus remain unclear, but their elucidation will be necessary if we are to fully understand parasite evolution.  相似文献   

11.
Understanding how environmental variation influences the distribution of parasite diversity is critical if we are to anticipate disease emergence risks associated with global change. However, choosing the relevant variables for modelling current and future parasite distributions may be difficult: candidate predictors are many, and they seldom are statistically independent. This problem often leads to simplistic models of current and projected future parasite distributions, with climatic variables prioritized over potentially important landscape features or host population attributes. We studied avian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon (which are viewed as potential emergent pathogens) in 37 Iberian blackcap Sylvia atricapilla populations. We used Partial Least Squares regression to assess the relative importance of a wide array of putative determinants of variation in the diversity of these parasites, including climate, landscape features and host population migration. Both prevalence and richness of parasites were predominantly related to climate (an effect which was primarily, but not exclusively driven by variation in temperature), but landscape features and host migration also explained variation in parasite diversity. Remarkably, different models emerged for each parasite genus, although all parasites were studied in the same host species. Our results show that parasite distribution models, which are usually based on climatic variables alone, improve by including other types of predictors. Moreover, closely related parasites may show different relationships to the same environmental influences (both in magnitude and direction). Thus, a model used to develop one parasite distribution can probably not be applied identically even to the most similar host–parasite systems.  相似文献   

12.
In this study, we tested which host species’ characteristics explain the nature and level of parasitism for host damselfly (Coenagrionidae)–water mite (Arrenuridae) parasite associations. Prevalence and intensity of mite parasites, and mite species richness were examined in relation to geographic range size, regional occurrence, relative local abundance, phenology and body size of host damselfly species. A total of 7107 damselfly individuals were collected representing 16 species from 13 sites in southeastern Ontario and southwestern Quebec, Canada. Using comparative methods, differences in prevalence and intensity of parasitism could be predicted by a host species’ geographic range and phenology. Barcoding based on Cytochrome Oxidase I revealed 15 operational taxonomic units (OTUs) for mite species. The number of mite OTUs known to infest a given host species was explained by a host species’ regional occurrence. Our findings demonstrate the need to measure factors at several ecological scales in order to understand the breadth of evolutionary interactions with host–parasite associations and the selective ‘milieu’ for particular species of both hosts and parasites.  相似文献   

13.
Species richness of parasite assemblages varies among host species. Earlier studies that searched for host-related determinants of parasite diversity mainly considered host traits that affect the probability of host encounter with parasites, whereas host traits related to defensibility against parasites have rarely been investigated. From the latter perspective, evolutionary investment in ??expensive?? tissue or organs (like testes or brain) may trade off against energetically costly anti-parasitic defences. If so, richer parasite assemblages are expected in hosts with larger testes and brains. We studied the relationships between testes and brain size and diversity of parasites (fleas, gamasid mites and helminths) in 55 rodent species using a comparative approach and application of two methods, namely the method of independent contrasts and generalized least-squares (GLS) analysis. Both phylogenetically correct methods produced similar results for flea and helminth species richness. Testes size positively correlated with flea and helminth species richness but not gamasid mite species richness. No correlation between brain size and species richness of any parasite group was found by the method of independent contrasts. However, GLS analysis indicated negative correlation between brain size and mite species richness. Our results cast doubt on the validity of the expensive tissue hypothesis, but suggest instead that larger testes are associated with higher parasite diversity via their effect on mobility and/or testosterone-mediated immunosuppression.  相似文献   

14.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

15.
Sympatric populations of tetraonid birds tend to fluctuate in synchrony, at least on local scales. If shared parasites among sympatric populations of different tetraonid species are to operate as a local, synchronizing factor for population fluctuations at least two conditions should be met: i) the host species should share the same (or similar) parasite species, and ii) geographical location should contribute significantly more to the variation in the parasite species composition and abundance than differences among host species. We examined these conditions among subpopulations of sympatric willow ptarmigan and rock ptarmigan and found that host species shared a common pool of parasite species, and geographic location was more important than host species in determining parasite abundance across locations. There was no time lag between density oscillations in the two hosts, suggesting a symmetrical pattern of transmission and maintenance of parasites within habitats governed by the density of hosts and the environment. These findings are consistent with the idea that parasites may play a role in generating synchronous density fluctuations, but large scale experiments are needed to verify this hypothesis.  相似文献   

16.
Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 23 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone.  相似文献   

17.
Parasite diversity and abundance (parasite load) vary greatly among host species. However, the influence of host traits on variation in parasitism remains poorly understood. Comparative studies of parasite load have largely examined measures of parasite species richness and are predominantly based on records obtained from published data. Consequently, little is known about the relationships between host traits and other aspects of parasite load, such as parasite abundance, prevalence and aggregation. Meanwhile, understanding of parasite species richness may be clouded by limitations associated with data collation from multiple independent sources. We conducted a field study of Lake Tanganyika cichlid fishes and their helminth parasites. Using a Bayesian phylogenetic comparative framework, we tested evolutionary associations between five key host traits (body size, gut length, diet breadth, habitat complexity and number of sympatric hosts) predicted to influence parasitism, together with multiple measures of parasite load. We find that the number of host species that a particular host may encounter due to its habitat preferences emerges as a factor of general importance for parasite diversity, abundance and prevalence, but not parasite aggregation. In contrast, body size and gut size are positively related to aspects of parasite load within, but not between species. The influence of host phylogeny varies considerably among measures of parasite load, with the greatest influence exerted on parasite diversity. These results reveal that both host morphology and biotic interactions are key determinants of host–parasite associations and that consideration of multiple aspects of parasite load is required to fully understand patterns in parasitism.  相似文献   

18.
Species with close associations to a specific host species, such as parasites and phytophages, make immense contributions to biodiversity. Hence, factors determining the variation in species richness among hosts are a main focus of ecological research. Investigations of determining factors of fungivorous species among host species are still scarce. Based on ecological patterns of parasites and phytophages, we hypothesized that the species richness of tree‐fungus beetles of the family Ciidae (Coleoptera) would increase with increasing basidiome size, niche diversity of the growth form, durability, increasing abundance and decreasing phylogenetic isolation of the host fungus. Our generalized least‐squares model, controlled by host phylogeny, revealed that Ciidae species richness increases with host abundance, but decreases with host phylogenetic isolation. In contrast with our prediction, Ciidae species richness was higher in annual basidiomes than in perennials. Pileate basidiomes revealed higher species richness than resupinate and stipitate basidiomes, which may be interpreted as being a result of their higher host niche diversity. The importance of host abundance, measured on the landscape scale, corroborates that fungivore species richness among macrofungal hosts is determined by factors similar to those that determine parasite and phytophage species richness among their hosts. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 699–708.  相似文献   

19.
Ondračková  M.  Bartáková  V.  Kvach  Y.  Bryjová  A.  Trichkova  T.  Ribeiro  F.  Carassou  L.  Martens  A.  Masson  G.  Zechmeister  T.  Jurajda  P. 《Hydrobiologia》2021,848(9):2169-2187

Species introductions often coincide with loss of genetic diversity and natural enemies. Anthropogenic translocation of the North-American pumpkinseed Lepomis gibbosus (L., 1758) (Centrarchidae) and its further spread have resulted in recent species establishment in most European countries. This study determines genetic differentiation of non-native European pumpkinseed populations and identifies how their genetic structure relates to the distribution and abundance of parasite species. Microsatellite analysis indicated presence of three genetic lineages, which were well supported by discriminant analysis based on parasite abundance data. The first lineage clustered pumpkinseed populations from northern and southern France and showed high allelic richness, heterozygosity and parasite richness. The second included populations along the “Southern invasion corridor” connecting the rivers Rhine, Main and Danube. The fish exhibited low to high genetic and parasite diversity and generally high parasite abundance. The third lineage clustered populations with low genetic and parasite diversity, located in Portuguese reservoirs and water bodies along the upper Elbe. Parasite species richness was significantly associated with host microsatellite heterozygosity and allelic richness, a trend partially affected by richness of North-American parasites. Furthermore, our results indicate that parasite community composition may serve as a useful biological tool to discriminate non-native fish populations and their inter-relationships.

  相似文献   

20.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号