首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Associations between environmentally transmitted symbionts and their hosts provide a unique opportunity to study the evolution of specificity and subsequent radiation of tightly coupled host-symbiont assemblages [3, 8, 24]. The evidence provided here from the environmentally transmitted bacterial symbiont Vibrio fischeri and its sepiolid squid host (Sepiolidae: Euprymna) demonstrates how host-symbiont specificity can still evolve without vertical transmission of the symbiont [1]. Infection by intraspecific V. fischeri symbionts exhibited preferential colonization over interspecific V. fischeri symbionts, indicating a high degree of specificity for the native symbiotic strains. Inoculation with symbiotic bacteria from other taxa (monocentrid fish and loliginid squids) produced little or no colonization in two species of Euprymna, despite their presence in the same or similar habitats as these squids. These findings of host specificity between native Vibrios and sepiolid squids provides evidence that the presence of multiple strains of symbionts does not dictate the composition of bacterial symbionts in the host.  相似文献   

2.
Disentangling the ecological factors that contribute to the assembly of the microbial symbiont communities within eukaryotic hosts is an ongoing challenge. Broadly speaking, symbiont propagules arrive either from external sources in the environment or from internal sources within the same host individual. To understand the relative importance of these propagule sources to symbiont community assembly, we characterized symbiotic fungal endophyte communities within the roots of three species of beachgrass in a field experiment. We manipulated two aspects of the external environment, successional habitat and physical disturbance. To determine the role of internal sources of propagules for endophyte community assembly, we used beachgrass individuals with different pre‐existing endophyte communities. Endophyte species richness and community composition were characterized using culture‐based and next‐generation sequencing approaches. Our results showed that external propagule sources associated with successional habitat, but not disturbance, were particularly important for colonization of most endophytic taxa. In contrast, internal propagule sources played a minor role for most endophytic taxa but were important for colonization by the dominant taxon Microdochium bolleyi. Our findings highlight the power of manipulative field experiments to link symbiont community assembly to its underlying ecological processes, and to ultimately improve predictions of symbiont community assembly across environments.  相似文献   

3.
Cooperative interactions between species, termed mutualisms, play a key role in shaping natural ecosystems, economically important agricultural systems, and in influencing human health. Across different mutualisms, there is significant variation in the benefit that hosts receive from their symbionts. Empirical data suggest that transmission mode can help explain this variation: vertical transmission, where symbionts infect their host's offspring, leads to symbionts that provide greater benefits to their hosts than horizontal transmission, where symbionts leave their host and infect other hosts in the population. However, two different theoretical explanations have been given for this pattern: firstly, vertical transmission aligns the fitness interests of hosts and their symbionts; secondly, vertical transmission leads to increased relatedness between symbionts sharing a host, favouring cooperation between symbionts. We used a combination of analytical models and dynamic simulations to tease these factors apart, in order to compare their separate influences and see how they interact. We found that relatedness between symbionts sharing a host, rather than transmission mode per se, was the most important factor driving symbiont cooperation. Transmission mode mattered mainly because it determined relatedness. We also found evolutionary branching throughout much of our simulation, suggesting that a combination of transmission mode and multiplicity of infections could lead to the stable coexistence of different symbiont strategies.  相似文献   

4.
Question: Phytogenic mounds (nebkhas) ‐ the natural accumulation of wind‐blown sediments within or around the canopies of plants ‐ have been proposed as important structures for locally maintaining high species richness in coastal and arid ecosystems. Nebkhas are assumed to increase habitat heterogeneity, but what is the importance of the nebkha host species relative to other nebkha characteristics in determining the associated plant assemblages? Are some host species more effective in creating diversity hotspots, or does a single species‐area relationship apply to all nebkhas, regardless of host species? Can the influence of the host be ascribed to its indirect effects on abiotic attributes of the nebkha complex? Methods and location: We investigated plant species richness and composition on nebkhas around six psammophytic species on Mediterranean coastal dunes of the Sinai Peninsula. Results: Plant species richness was significantly related to nebkha size by the single power function according to the general prediction of island biogeography theory, but this relationship was modified ‐ though to a limited degree ‐ by nebkha host species identity. Canonical Correspondence Analysis revealed that nebkha host species identity and nebkha environmental and non‐environmental factors significantly explained species composition on the nebkhas, but host species identity did so to a greater extent. The latter might reflect differences in seed trapping ability or free space for colonization between host species. Conclusion: Differences in community composition and richness among nebkhas formed by different host species represent a key factor in the maintenance of plant diversity on arid coastal dunes.  相似文献   

5.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

6.
The numbers of intestinal helminth species (parasite richnesS) recorded from each of 488 vertebrate host species are compared using data compiled from the published literature. Associations between parasite richness, sampling effort, host size and host habitat (aquatic versus terrestrial) are assessed using a method designed to control for phylogenetic association. Parasite richness increases with the number of surveys on which each estimate of parasite richness is based (sampling effort). When the effects of sampling effort are controlled for, there remains a strong positive relationship between parasite richness and host body size. There is no tendency for aquatic hosts to harbour more parasite species than terrestrial hosts independently of differences in sampling effort and body size. The results are interpreted in the context of hosts representing habitats for parasite colonization, resource allocation between parasite species, and the age of the major mammalian radiations.  相似文献   

7.
Bacteria–eukaryote endosymbioses are perhaps the most pervasive co-evolutionary associations in nature. Here, intracellular chemosynthetic symbionts of deep-sea clams ( Vesicomyidae ) were analysed by amplicon pyrosequencing to explore how symbiont transmission mode affects the genetic diversity of the within-host symbiont population. Vesicomyid symbionts ( Gammaproteobacteria ) are presumed to be obligately intracellular, to undergo nearly strict vertical transmission between host generations, and to be clonal within a host. However, recent data show that vesicomyid symbionts can be acquired laterally via horizontal transfer between hosts or uptake from the environment, potentially creating opportunities for multiple symbiont strains to occupy the same host. Here, genotype-specific PCR and direct sequencing of the bacterial internal transcribed spacer initially demonstrated the co-occurrence of two symbiont strains, symA and symB (93.5% nt identity), in 8 of 118 Vesicomya sp. clams from 3 of 7 hydrothermal vent sites on the Juan de Fuca Ridge. To confirm multiple strains within individual clams, amplicon pyrosequencing of two symbiont loci was used to obtain deep-coverage measurements (mean: ∼1500× coverage per locus per clam) of symbiont population structure. Pyrosequencing confirmed symA–symB co-occurrence for two individuals, showing the presence of both genotypes in amplicon pools. However, in the majority of clams, the endosymbiont population was remarkably homogenous, with > 99.5% of sequences collapsing into a single symbiont genotype in each clam. These results support the hypothesis that a predominantly vertical transmission strategy leads to the fixation of a single symbiont strain in most hosts. However, mixed symbiont populations do occur in vesicomyids, potentially facilitating the exchange of genetic material between divergent symbiont lineages.  相似文献   

8.
Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S-23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade ("M") within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host-symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host-symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments.  相似文献   

9.
Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.  相似文献   

10.
Richness and abundance of facultative symbionts vary strongly with aphid species and genotype, symbiont strain, host plant, biogeography, and a number of abiotic factors. Despite indications that aphids in the same ecological niche show similar levels of facultative symbiont richness, existing reports do not consider the potential role of host plants on aphid microbial community. Little is known about how oligophagy and polyphagy may be influenced by secondary symbiont distribution, mainly because studies on secondary symbiont diversity are biased towards polyphagous aphids from the Northern Hemisphere. Here, we demonstrate the richness and abundance of the most common aphid-associated facultative symbionts in two tropical aphid species, the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) (Hemiptera: Aphididae) and the polyphagous Aphis aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). Aphis citricidus is restricted to Citrus sp. host plants and closely related genera, whereas A. aurantii successfully exploits a wide variety of host plants from different families. Both were collected in the same ecological niche and our data basically indicated the same richness of secondary symbionts, but the abundance at which secondary symbionts occurred was very distinct between the two species. Spiroplasma was the most abundant facultative symbiont associated with A. citricidus and A. aurantii in the ecological niche studied. Single and multiple secondary symbiont infections were observed, but diversity of multiple infections was particularly high in A. citricidus. We discuss our findings and suggest hypotheses to explain causes and consequences of the differences in secondary symbiont diversity observed between these two aphid species.  相似文献   

11.
Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I.?variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I.?fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts.  相似文献   

12.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

13.
Species with close associations to a specific host species, such as parasites and phytophages, make immense contributions to biodiversity. Hence, factors determining the variation in species richness among hosts are a main focus of ecological research. Investigations of determining factors of fungivorous species among host species are still scarce. Based on ecological patterns of parasites and phytophages, we hypothesized that the species richness of tree‐fungus beetles of the family Ciidae (Coleoptera) would increase with increasing basidiome size, niche diversity of the growth form, durability, increasing abundance and decreasing phylogenetic isolation of the host fungus. Our generalized least‐squares model, controlled by host phylogeny, revealed that Ciidae species richness increases with host abundance, but decreases with host phylogenetic isolation. In contrast with our prediction, Ciidae species richness was higher in annual basidiomes than in perennials. Pileate basidiomes revealed higher species richness than resupinate and stipitate basidiomes, which may be interpreted as being a result of their higher host niche diversity. The importance of host abundance, measured on the landscape scale, corroborates that fungivore species richness among macrofungal hosts is determined by factors similar to those that determine parasite and phytophage species richness among their hosts. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 699–708.  相似文献   

14.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

15.
Reef corals are examples of metazoans that engage in mutualisms with a variety of microorganisms, including dinoflagellates, Bacteria, Archaea, and viruses. The high adaptive capacity of these microbial symbionts can be co‐opted by their coral hosts, and various emergent traits of these associations, such as thermotolerance, are undergoing strong selection due to climate change. This selection may spur the rise of microbial ‘disaster taxa’: opportunistic, cosmopolitan generalists that can proliferate and increase host survivorship following disturbances. Coral bleaching (a stress‐induced loss of dinoflagellates) constitutes one type of catastrophic disturbance for resident symbiont communities, and opens novel patches of host for colonization by microbial disaster taxa. Moreover, the compartmentalization of microbial symbionts within coral polyps reduces their effective population size and thus facilitates the spread of disaster taxa during times of environmental change. These phenomena suggest that, despite widespread loss of coral cover as a result of climate disturbances, the potential spread of resilient microbial disaster taxa in surviving colonies can have important implications for coral reef persistence over the coming decades.  相似文献   

16.
Range expansion results from complex eco‐evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free‐living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche‐driven and dispersal‐driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host‐mediated dispersal, although the requirement for among‐host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off‐host environmental gradients during host‐mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.  相似文献   

17.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

18.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

19.
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.  相似文献   

20.
Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号