首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

2.
Summary Synaptic regulation of arginine vasopressin (AVP)-containing neurons by neuropeptide Y (NPY)-containing monoaminergic neurons was demonstrated in the paraventricular nucleus of the rat hypothalamus. NPY and AVP were immunolabeled in the pre- and the post-embedding procedures, respectively, and monoaminergic fibers were marked by incorporating 5-hydroxydopamine (5-OHDA), a false neurotransmitter. The immunoreaction for NPY was expressed by diaminobenzidine (DAB) chromogen, and that for AVP by gold particles. The DAB chromogen was localized on the surface of the membrane structures, such as vesicles or mitochondria, and on the core of large cored vesicles. Gold particles were located on the core of the secretory granules within the AVP cell bodies and processes. The incorporated 5-OHDA was found as dense cores within small or large vesicular structures. From these data, three types of nerve terminals were discernible: NPY-containing monoaminergic, NPY-containing non-aminergic, and monoaminergic fibers. The AVP cell bodies appeared to have synaptic junctions formed by these nerve terminals as well as by the unlabeled nerve terminals which have small clear vesicles and large cored vesicles. These different types of nerve terminals were frequently observed in a closely apposed position on the same AVP cell bodies. The functional relationships of these three types of neuronal terminals are discussed.  相似文献   

3.
C Iwai  H Ochiai  Y Nakai 《Acta anatomica》1989,136(4):279-284
The neuropeptide Y (NPY) immunoreactive synaptic input to neurons containing neurophysin II (NP II), the carrier protein of vasopressin (VP), was observed in the paraventricular nucleus (PVN) of the rat hypothalamus by double-labeling immunocytochemistry combining the preembedding peroxidase-antiperoxidase (PAP) method with the postembedding immunogold staining method at the electron-microscopic level. NPY-like immunoreactivities were detected by the PAP method in the dense granular vesicles (70-100 nm in diameter) in the immunoreactive presynaptic axon terminals. NP II-like immunoreactive large neurosecretory granules labeled with gold particles were found in the neurons receiving synaptic input of the NPY-like immunoreactive terminals. This suggests that NPY may be a neurotransmitter or neuromodulator and that NPY neurons may, through synaptic contacts, regulate the secretion of VP neurons.  相似文献   

4.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

5.
Calcitonin gene-related peptide-immunoreactive (CGRP-IR) nerves within guinea-pig peribronchial ganglia were studied at ultrastructural level using pre-embedding immunohistochemistry. Preterminal CGRP-IR axons were unmyelinated and contained singular immunoreactive dense core vesicles. CGRP-IR axon terminals were filled with numerous non-reactive small clear vesicles and few immunoreactive dense core vesicles. Some of these terminals were presynaptic to large neuronal processes emerging from local ganglion cells. Another population of presynaptic varicosities lack CGRP-IR. Within CGRP-IR terminals, non-reactive clear vesicles were clustered at the presynaptic membrane whereas CGRP-IR large vesicles remained in some distance from the synaptic cleft. The present observations indicate that: (1) at least two neurochemically different types of synaptic input exist to guinea-pig peribronchial ganglia. (2) CGRP-IR presynaptic terminals probably utilize a non-peptide transmitter for fast synaptic transmission, whilst the peptides are likely to be released parasynaptically and may act in a modulatory fashion.  相似文献   

6.
本文应用免疫细胞化学方法在光镜与电镜下观察了大鼠孤束核内脑啡肽样免疫反应(ENK-LI)阳性结构的分布特征和ENK-LI轴突终末的突触联系以及非突触性关系。结果表明:(1)经秋水仙素处理的大鼠,其孤束核内有许多ENK-LI胞体的分布;而未经秋水仙素处理的大鼠,其孤束核内可见密集的ENK-LI纤维与终末;ENK-LI胞体、纤维和终末主要分布于锥体交叉平面至闩平面的孤束核内侧亚核与胶状质亚核。(2)ENK-LI阳性产物主要定位于小圆形清亮囊泡外表面、大颗粒囊泡内和线粒体外表面等处。(3)ENK-LI轴突终末主要与阴性树突形成轴-树突触。(4)阴性轴突终末终止于ENK-LI轴突终末上,形成轴-轴突触。(5)ENK-LI轴突终末与阴性轴突终末形成非突触性的轴-轴并靠。以上结果提示孤束核内的ENK-LI神经成分主要通过突触后机制、也不排除突触前作用,参与孤束核中内脏信息的整合过程,而且这一作用又受到非ENK-LI神经成分的调控。  相似文献   

7.
Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.  相似文献   

8.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

9.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

10.
The monoamine-synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and tryptophan hydroxylase (TrH) were immunocytochemical localized in dopaminergic, noradrenergic and serotonergic neurons of rat brain by light and electron microscopy. In dopaminergic and serotonergic neurons, the respective synthesizing enzymes. TH and TrH, were distributed throughout the cytoplasm of the neuronal perikarya, dendrites, axons and terminals. The most selective accumulation of reaction product for the specific enzyme was associated: (a) in perikarya with endoplasmic reticulum, Golgi apparatus and microtubules, (b) in processes with microtubules, and (c) in terminals with dense granules or clear vesicles. The labeled terminals were characterized by their content of labeled organelles and the absence of synaptic junctions. In noradrenergic neurons, both TH and DBH were localized in the perikarya, similar to TH in dopamine neurons. TH and DBH differed in their localization within proximal axons and dendrites in that TH was associated with microtubules but DBH was not. These results provide ultrastructural evidence to suggest that monoamines may be: (a) synthesized by enzymes which are associated with different organelles depending on the portion of the neuron and the type of enzyme; (b) synthesized in both axons and dendrites and (c) released from terminals without postsynaptic membrane specializations.  相似文献   

11.
Guan, J.-L., Q.-P. Wang and Y. Nakai. Electron microscopic observation of delta-opioid receptor-1 in the rat area postrema. Peptides 18(10) 1623–1628, 1997.—The ultrastructural localization of delta-1-opioid-receptor in the rat area postrema was quantitatively studied by pre-embedding avidin-biotin-peroxidase-complex technique. Most of the immunoreactive profiles (67.4%) observed in the present study were axon terminals, whereas the immunopositive dendrites were less (28.3%). Within the axon terminals, the immunoreactivity was found stronger in the dense-cored vesicles than in the small, clear, and round vesicles. Almost 2/3 of the DOR-1 immunoreactive axon terminals had DAB reacted dense-cored vesicles. About half of the immunopositive axon terminals were found to make synapse to dendrites. The dendrites postsynaptic to DOR-1 immunoreactive axon terminals were identified as DOR-1 immunoreactive or not, mainly according to the immunoreactive appearance of the postsynaptic membrane. About half of the DOR-1 immunoreactive dendrites were observed to receive synapse; most of them have their immunoreactivity results at the postsynaptic membranes.  相似文献   

12.
Vasoactive intestinal peptide (VIP)-like immunoreactive terminal fields were examined in the lateral septum of the pigeon by means of immunocytochemistry. According to light-microscopic observations, these projections originated from VIP-like immunoreactive cerebrospinal fluid (CSF)-contacting neurons, which are located in the ependymal layer of the lateral septum and form a part of the lateral septal organ. The processes of these cells gave rise to dense terminal-like structures in the lateral septum. Pre-embedding immuno-electron microscopy revealed that VIP-like immunoreactive axon terminals had synaptoid contacts with perikarya of small VIP-immunonegative neurons of the lateral septum, which were characterized by an invaginated nucleus, numerous mitochondria, a well-developed Golgi apparatus, endoplasmic reticulum and a small number of dense-core vesicles (about 100 nm in diameter). VIP-like immunoreactive axons were also seen in contact with immunonegative dendrites in the lateral septum. In both axosomatic and axodendritic connections, VIP-like immunoreactive presynaptic terminals contained large dense-core vesicles, clusters of small vesicles and mitochondria. These findings suggest that VIP-immunoreactive neurons of the lateral septal organ project to small, presumably peptidergic nerve cells of the lateral septum and that the VIP-like neuropeptide serves as a neuromodulator (-transmitter) in this area.  相似文献   

13.
S S Tay  T H Williams  J Y Jew 《Peptides》1989,10(1):113-120
Neurotensin (NT) was demonstrated in the central nucleus of the rat amygdala (CNA) using a modification of the avidin-biotin complex immunohistochemical technique. Electron-dense reaction product (particles were 15-25 nm in diameter) was localized in perikarya, dendrites, axons, and axon terminals. It was found also associated with profiles of rough endoplasmic reticulum, mitochondria, microtubules, and small agranular as well as large granular vesicles. In distal dendrites, the reaction product was associated with microtubules, vesicles, and postsynaptic densities. Axon terminals of three types formed synaptic contracts with NT-immunoreactive neurons in the CNA: one was characterized by numerous round or oval agranular vesicles, the second by numerous pleomorphic vesicles, and the third by agranular vesicles that were loosely distributed and pleomorphic. All three types formed symmetric axosomatic and asymmetric axodendritic contacts. NT-immunoreactive axon terminals containing small round agranular vesicles stood out clearly from the intermingling profiles of immunonegative structures. We found numerous glomeruli, each consisting of a central NT-immunoreactive dendrite surrounded by all three types of axon terminals. We observed that some NT-immunoreactive terminals formed symmetric axoaxonal contacts with each other, providing evidence for the presence of local NT-to-NT circuits, whereas many others synapsed with axon terminals devoid of NT immunoreactivity.  相似文献   

14.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

15.
By applying a double-immunolabeling technique to preembedded tissue preparations, we demonstrated the existence of serotoninergic innervation to neurons containing vasoactive intestinal polypeptide (VIP) in the rat suprachiasmatic nucleus (SCN). Immunoreactivity for serotonin and VIP was revealed by the presence of diaminobenzidine (DAB) reaction products and silver-intensified DAB reaction products, respectively; in a further stage, the silver grains were substituted with gold particles. DAB reaction products were precipitated on the surface of vesicular structures, while gold particles were scattered diffusely throughout the neuroplasma at various densities. Serotoninergic axons were numerous and closely packed together, occasionally forming synaptic junctions with gold-labeled VIP-containing neurons. At these synaptic junctions, small vesicular structures accumulated to form a coat under the presynaptic membrane, and the postsynaptic membrane was lined with a homogeneous accumulation of fine deposits. This postsynaptic apparatus varied in appearance; some parts were flat and thin, while others were of irregular thickness. Serotoninergic fibers also formed synaptic junctions with unidentified neurons, in which postsynaptic membrane specialization was also observable. As VIP-containing neurons are known to be synapsed by somatostatin (SRIH)-containing neurons, their regulation must involve both serotonin and SRIH at least.  相似文献   

16.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

17.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

18.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-LI) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the anirnals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine.  相似文献   

19.
Acetylcholinesterase (AChE) activity at the synapses of presynaptic boutons on presumed alpha-motoneurons in the chicken ventral horn was studied histochemically at the light- and electron-microscope levels. At the light-microscope level, many dot-like AChE-active sites were observed on the soma and dendrites of presumed alpha-motoneurons. On electron microscopy, reaction products for AChE activity were observed mainly in the synaptic clefts of the four kinds of presynaptic boutons: (1) S type boutons, (2) boutons containing small, spherical, dense cored vesicles (diameter range, 60-105 nm) and spherical, clear vesicles, (3) boutons containing medium-sized, spherical, dense cored vesicles (65-115 nm) and spherical, clear vesicles, and (4) boutons containing large, spherical, dense cored vesicles (80-130 nm) and spherical, clear vesicles. In the light of previous physiological and biochemical studies, the present results suggest the possibility that each of these presynaptic boutons which are AChE-active in their synaptic clefts may contain acetylcholine, substance P, or enkephalins which acts as a neurotransmitter or modulator.  相似文献   

20.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号