首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

2.
B Segui-Real  G Kispal  R Lill    W Neupert 《The EMBO journal》1993,12(5):2211-2218
The protein translocation machineries of the outer and inner mitochondrial membranes usually act in concert during translocation of matrix and inner membrane proteins. We considered whether the two machineries can function independently of each other in a sequential reaction. Fusion proteins (pF-CCHL) were constructed which contained dual targeting information, one for the intermembrane space present in cytochrome c heme lyase (CCHL) and the other for the matrix space contained in the signal sequence of the precursor of F1-ATPase beta-subunit (pF1 beta). In the absence of a membrane potential, delta psi, the fusion proteins moved into the intermembrane space using the CCHL pathway. In contrast, in the presence of delta psi they followed the pF1 beta pathway and eventually were translocated into the matrix. The fusion protein pF51-CCHL containing 51 amino acids of pF1 beta, once transported into the intermembrane space in the absence of a membrane potential, could be further chased into the matrix upon re-establishing delta psi. The sequential and independent movement of the fusion protein across the two membranes demonstrates that the translocation machineries act as distinct entities. Our results support a model in which the two translocation machineries can function independently of each other, but generally interact in a dynamic fashion to achieve simultaneous translocation across both membranes. In addition, the results provide information about the targeting sequences within CCHL. The protein does not contain a signal for retention in the intermembrane space; rather, it lacks matrix targeting information, and therefore is unable to undergo delta psi-dependent interaction with the protein translocation apparatus in the inner membrane.  相似文献   

3.
Translocation of precursor proteins across the mitochondrial membranes requires the coordinated action of multisubunit translocases in the outer and inner membrane, and the driving force for translocation across the inner membrane is provided by the matrix-located heat shock protein 70 (mtHsp70). The central components of the protein import machinery are essential. Here we describe Zim17, an essential protein with a zinc finger motif involved in protein import into mitochondria. Comparative genomics suggested a correction to the open reading frame of YNL310c, the gene encoding Zim17 in Saccharomyces cerevisiae. The revised open reading frame codes for a classic mitochondrial targeting signal, which is processed from Zim17 in the mitochondrial matrix. Loss of Zim17 selectively diminishes import of proteins into the matrix of mitochondria, but this loss of Zim17 is partially suppressed by overexpression of the J-protein Pam18/Tim14. We propose that Zim17 functions as an example of a "fractured" J-protein, where a protein like Zim17 contributes a zinc finger domain to Type III J-proteins, in toto providing for substrate loading onto Hsp70.  相似文献   

4.
To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.  相似文献   

5.
Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.  相似文献   

6.
beta-hydroxybutyrate dehydrogenase (BDH), a major protein located in the inner mitochondrial membrane is encoded, as most of mitochondrial proteins, in the nuclear genome. It is synthetized on the free polysomes and post-translationally imported into the mitochondria. The neosynthesized protein is a higher molecular weight precursor. The presequence is cleaved by the matrix protease to give the mature protein. The translocation across the mitochondrial membranes needs energy. The results also indicate that cytosolic factors with low molecular weight are essential in the recognition of precursor by mitochondria and to sort out newly synthetized nuclear encoded mitochondrial proteins from others nuclear encoded proteins.  相似文献   

7.
Mitochondrial tRNA import is widespread, but mechanistic insights of how tRNAs are translocated across mitochondrial membranes remain scarce. The parasitic protozoan T. brucei lacks mitochondrial tRNA genes. Consequently, it imports all organellar tRNAs from the cytosol. Here we investigated the connection between tRNA and protein translocation across the mitochondrial inner membrane. Trypanosomes have a single inner membrane protein translocase that consists of three heterooligomeric submodules, which all are required for import of matrix proteins. In vivo depletion of individual submodules shows that surprisingly only the integral membrane core module, including the protein import pore, but not the presequence-associated import motor are required for mitochondrial tRNA import. Thus we could uncouple import of matrix proteins from import of tRNAs even though both substrates are imported into the same mitochondrial subcompartment. This is reminiscent to the outer membrane where the main protein translocase but not on-going protein translocation is required for tRNA import. We also show that import of tRNAs across the outer and inner membranes are coupled to each other. Taken together, these data support the ‘alternate import model’, which states that tRNA and protein import while mechanistically independent use the same translocation pores but not at the same time.  相似文献   

8.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

9.
Tail-anchored proteins are inserted into intracellular membranes via a C-terminal transmembrane domain. The topology of the protein is such that insertion must occur post-translationally, since the insertion sequence is not available for membrane insertion until after translation of the tail-anchored polypeptide is completed. Here, we show that the targeting information in one such tail-anchored protein, translocase in the outer mitochondrial membrane 22, is contained in a short region flanking the transmembrane domain. An equivalent region is sufficient to specify the localisation of Bcl2 and SNARE proteins to the secretory membranes. We discuss the targeting process for directing members of this protein family to the secretory and mitochondrial membranes in vivo.  相似文献   

10.
11.
Mitochondria contain approximately 1000 different proteins, which are located in four different compartments, outer membrane, inner membrane, intermembrane space and matrix. The vast majority of these proteins has to be imported from the cytosol. Therefore, sophisticated molecular machineries have evolved that mediate protein translocation across or insertion into mitochondrial membranes and subsequent assembly into multi-subunit complexes. While the initial entry of virtually all mitochondrial proteins is mediated by the general import pore of the outer membrane, at least four different downstream pathways are dedicated to import and assembly of proteins into a specific compartment.  相似文献   

12.
The proteome of the outer membrane of mitochondria and chloroplasts consists of membrane proteins anchored by α-helical or β-sheet elements. While proteins with α-helical transmembrane domains are present in all cellular membranes, proteins with β-barrel structure are specific for these two membranes. The organellar β-barrel proteins are encoded in the nuclear genome and thus, have to be targeted to the outer organellar membrane where they are recognized by surface exposed translocation complexes. In the last years, the signals that ensure proper targeting of these proteins have been investigated as essential base for an understanding of the regulation of cellular protein distribution. However, the organellar β-barrel proteins are unique as most of them do not contain a typical targeting information in form of an N-terminal cleavable targeting signal. Recently, it was discovered that targeting and surface recognition of mitochondrial β-barrel proteins in yeast, humans and plants depends on the hydrophobicity of the last β-hairpin of the β-barrel. However, we demonstrate that the hydrophobicity is not sufficient for the discrimination of targeting to chloroplasts or mitochondria. By domain swapping between mitochondrial and chloroplast targeted β-barrel proteins atVDAC1 and psOEP24 we demonstrate that the presence of a hydrophilic amino acid at the C-terminus of the penultimate β-strand is required for mitochondrial targeting. A mutation of the chloroplast β-barrel protein psOEP24 which mimics such profile is efficiently targeted to mitochondria. Thus, we present the properties of the signal for mitochondrial targeting of β-barrel proteins in plants.  相似文献   

13.
《The Journal of cell biology》1988,107(6):2037-2043
Bovine pancreatic trypsin inhibitor (which contains three intramolecular disulfide bridges) was chemically coupled to the COOH terminus of a purified artificial mitochondrial precursor protein. When the resulting chimeric precursor was presented to energized isolated yeast mitochondria, its trypsin inhibitor moiety prevented the protein from completely entering the organelle; the protein remained stuck across both mitochondrial membranes, with its NH2 terminus in the matrix and its trypsin inhibitor moiety still exposed on the mitochondrial surface. The incompletely imported protein appeared to "jam" mitochondrial protein import sites since it blocked import of three authentic mitochondrial precursor proteins; it did not collapse the potential across the mitochondrial inner membrane. Quantification of the inhibition indicated that each isolated mitochondrial particle contains between 10(2) and 10(3) protein import sites.  相似文献   

14.
The carrier proteins of the mitochondrial inner membrane consist of three structurally related tandem repeats (modules). Several different, and in some cases contradictory, views exist on the role individual modules play in carrier transport across the mitochondrial membranes and how they promote protein insertion into the inner membrane. Thus, by use of specific translocation intermediates, we performed a detailed analysis of carrier biogenesis and assessed the physical association of carrier modules with the inner membrane translocation machinery. Here we have reported that each module of the dicarboxylate carrier contains sufficient targeting information for its transport across the outer mitochondrial membrane. The carboxyl-terminal module possesses major targeting information to facilitate the direct binding of the carrier protein to the inner membrane twin-pore translocase and subsequent insertion into the inner membrane in a membrane potential-dependent manner. We concluded that, in this case, a single structural repeat can drive inner membrane insertion, whereas all three related units contribute targeting information for outer membrane translocation.  相似文献   

15.
16.
Mitochondria can unfold importing precursor proteins by unraveling them from their N-termini. However, how this unraveling is induced is not known. Two candidates for the unfolding activity are the electrical potential across the inner mitochondrial membrane and mitochondrial Hsp70 in the matrix. Here, we propose that many precursors are unfolded by the electrical potential acting directly on positively charged amino acid side chains in the targeting sequences. Only precursor proteins with targeting sequences that are long enough to reach the matrix at the initial interaction with the import machinery are unfolded by mitochondrial Hsp70, and this unfolding occurs even in the absence of a membrane potential.  相似文献   

17.
The protein translocations across mitochondrial membranes are carried out by specialized complexes, the Translocase of Outer Membrane (TOM) and Translocase of Inner Membrane (TIM). TIM23 translocon is responsible for translocating the mitochondrial matrix proteins across the mitochondrial inner membrane. Tim44 is an essential, peripheral membrane protein in TIM23 complex. Tim44 is tightly associated with the inner mitochondrial membrane on the matrix side. The Tim44 C-Terminal Domain (CTD) functions as an Inner Mitochondrial Membrane (IMM) anchor that recruits the Presequence protein Associated Motor (PAM) to the TIM23 channel. Using X-ray crystallographic and biochemical data, we show that the N-terminal helices A1 and A2 of Tim44 - CTD are crucial for its membrane tethering function. Based on our data, we propose a model showing how the N-terminal A1 and A2 amphipathic helices can either expose their hydrophobic face during membrane binding or conceal it in the soluble form. Therefore, the A1 and A2 helices of Tim44 may function as a membrane sensor.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2923-2931
Translocation of proteins across membranes of the endoplasmic reticulum, mitochondrion, and chloroplast has been shown to be mediated by targeting signals present in the transported proteins. To test whether the transport of proteins into peroxisomes is also mediated by a peptide targeting signal, we have studied the firefly luciferase gene that encodes a protein transported to peroxisomes in both insect and mammalian cells. We have identified two regions of luciferase which are necessary for transport of this protein into peroxisomes. We demonstrate that one of these, region II, represents a peroxisomal targeting signal because it is both necessary and sufficient for directing cytosolic proteins to peroxisomes. The signal is no more than twelve amino acids long and is located at the extreme carboxy-terminus of luciferase. The location of the targeting signal for translocation across the peroxisomal membrane therefore differs from the predominantly amino-terminal location of signals responsible for transport across the membranes of the endoplasmic reticulum, chloroplast, or mitochondrion.  相似文献   

19.
The human pathogen Trichomonas vaginalis harbors hydrogenosomes, organelles of mitochondrial origin that generate ATP through hydrogen‐producing fermentations. They contain neither genome nor translation machinery, but approximately 500 proteins that are imported from the cytosol. In contrast to well‐studied organelles like Saccharomyces mitochondria, very little is known about how proteins are transported across the two membranes enclosing the hydrogenosomal matrix. Recent studies indicate that—in addition to N‐terminal transit peptides—internal targeting signals might be more common in hydrogenosomes than in mitochondria. To further characterize the extent to which N‐terminal and internal motifs mediate hydrogenosomal protein targeting, we transfected Trichomonas with 24 hemagglutinin (HA) tag fusion constructs, encompassing 13 different hydrogenosomal and cytosolic proteins of the parasite. Hydrogenosomal targeting of these proteins was analyzed by subcellular fractionation and independently by immunofluorescent localization. The investigated proteins include some of the most abundant hydrogenosomal proteins, such as pyruvate ferredoxin oxidoreductase (PFO), which possesses an amino‐terminal targeting signal that is processed on import into hydrogenosomes, but is shown here not to be required for import into hydrogenosomes. Our results demonstrate that the deletion of N‐terminal signals of hydrogenosomal precursors generally has little, if any, influence upon import into hydrogenosomes. Although the necessary and sufficient signals for hydrogenosomal import recognition appear complex, targeting to the organelle is still highly specific, as demonstrated by the finding that six HA‐tagged glycolytic enzymes, highly expressed under the same promoter as other constructs studied here, localized exclusively to the cytosol and did not associate with hydrogenosomes.  相似文献   

20.
Mitochondrial dysfunction is an important intracellular lesion associated with a wide variety of diseases including neurodegenerative disorders. In addition to aging, oxidative stress and mitochondrial DNA mutations, recent studies have implicated a role for the mitochondrial accumulation of proteins such as plasma membrane associated amyloid precursor protein (APP) and cytosolic alpha synuclein in the pathogenesis of mitochondrial dysfunction in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which drive their transport across mitochondria. In general, mitochondrial entry of nuclear coded proteins is assisted by import receptors situated in both outer and inner mitochondrial membranes. A growing number of evidence suggests that APP and alpha synclein interact with import receptors to gain entry into mitochondrial compartment. Additionally, carboxy terminal cleaved product of APP, ~ 4 kDa Abeta, is also transported into mitochondria with the help of mitochondrial outer membrane import receptors. This review focuses on the mitochondrial targeting and accumulation of these two structurally different proteins and the mode of mechanism by which they affect the physiological functions of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号