首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In the present study, we have isolated and characterized the Lyt-1+, -2- T contrasuppressor (Tcs) cells from mice systemically primed with SRBC. Adoptive transfer of splenic Tcs cells from these mice abrogates oral tolerance and supports IgM and IgG anti-SRBC plaque-forming cell (PFC) responses; however, unlike the responses seen after transfer of Tcs cells derived from orally primed mice, low IgA responses were seen. Mice systemically primed with lower SRBC doses (0.01 to 1%) exhibited contrasuppression only within the L3T4- T cell subset, whereas mice primed with a high dose of SRBC (10%), harbored Lyt-1+, -2- Tcs cells in both the L3T4+ and L3T4- subsets. Both the L3T4- and L3T4+ Tcs cell subsets supported IgM and IgG responses when adoptively transferred to orally tolerized mice, and when added to tolerized spleen cell cultures. Splenic Tcs cells from systemically primed mice supported mainly IgG1 and IgG2b subclass anti-SRBC PFC responses, a pattern also seen with Tcs cells derived from orally primed mice. Both L3T4+ and L3T4- Tcs cells from systemically primed mice exhibited well established characteristics of contrasuppressor cells including binding to Vicia villosa lectin and expression of I-J. The splenic effector Tcs cells which support IgM, IgG1 and IgG2b anti-SRBC PFC responses are antigen-specific, since both L3T4- and L3T4+ Tcs cells from spleens of mice primed with 10% SRBC reverse tolerance to SRBC, but not to horse erythrocytes (HRBC). Further, both L3T4- and L3T4+ Tcs cells from HRBC-primed mice reverse tolerance to IgM and IgG anti-HRBC, but not to anti-SRBC responses. Isolation of T3-positive Lyt-1+, -2- and L3T4- Tcs cell subsets by flow cytometry followed by adoptive transfer, showed that effector Tcs cells express T3 and presumably contain an Ag-R (TCR-T3 complex). These studies show that systemic priming with heterologous RBC induces splenic Ag specific Tcs cells in a dose-dependent manner, which support IgM and IgG subclass responses, but not IgA responses.  相似文献   

2.
The murine intraepithelial lymphocyte (IEL) population is enriched in T cells that express the gamma delta-TCR, however, the biologic function served by these T cells remains obscure. IEL are considered to be major effector cells in mucosal immunity, and we have investigated whether IEL subsets could reverse orally induced systemic unresponsiveness (oral tolerance; OT) and support secondary type responses when adoptively transferred to mice orally tolerized with SRBC. When purified CD3+ IEL from mice orally primed with SRBC were transferred to adoptive hosts and challenged with SRBC, splenic IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses were observed. However, CD3+ IEL from HRBC orally primed mice did not abrogate SRBC induced OT. Further, HRBC-primed CD3+, IEL converted HRBC-specific OT but not SRBC-specific OT. CD3+ IEL could be separated into four subsets based on expression of CD4 and CD8. CD3+, CD4-, 8+ T cells were the major subset (74.5%), with smaller numbers of CD4- and CD8- (double negatives, DN) (7.8%), CD4+, 8- (7.6%) and CD4+, CD8+ (double positives) (10.1%) T cells. Interestingly, both the CD3+, CD8+, and the CD3+, DN IEL subsets abrogated OT, resulting in significant IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses when adoptively transferred to mice with OT. However, neither CD3+, CD4+, CD8-, nor double positive T cells affected OT when studied in this system. The CD3+, CD8+ IEL subset could be further separated into Thy-1+ (16.6%) and Thy-1- (83.4%) cells; adoptive transfer of Thy-1- cells abrogated oral tolerance whereas the Thy-1+ subset was without effect. When the expression of TCR on IEL with this biologic function was determined by use of monoclonal anti-alpha beta TCR (H57.597), TCR2-, CD3+ IEL possessed immunoregulatory function whereas the alpha beta-TCR+ (TCR2+) fraction did not abrogate OT. Immunoprecipitation of membrane fractions obtained from purified CD3+, CD4-, CD8+, Thy-1- IEL with polyclonal anti-delta peptide (Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) antibody revealed bands of 45 and 35 kDa, corresponding to the delta- and gamma-chains, respectively. These results suggest that gamma delta-TCR+ IEL possess a regulatory function, namely the restoration of immune responses in a state of oral tolerance. Further, both CD3+, CD4-, CD8+, Thy-1-, and CD3+, DN IEL T cells exhibit this effector contrasuppressor function.  相似文献   

3.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

4.
A profound state of specific tolerance for the contact sensitivity reaction can be produced by i.v. exposure to hapten on the surface of syngeneic macrophages. When the same haptenated cells are incubated with specific antibody to form cell-bound Ag-antibody complexes, i.v. injection induces immunity rather than tolerance. We observe that such cell-bound Ag-antibody complexes induce not only effector cells for contact sensitivity but also hapten-specific contrasuppressor T (Tcs) cells, which are capable of rendering effector cells resistant to the inhibitory effects of Ts cells. Whereas the induction of the effector cells of contact sensitivity by cell-bound complexes required I region compatibility between the injected cells and the recipient, the induction of Tcs cells showed no genetic restriction. On the other hand, induction of contrasuppression required intact Fc on the complexed antibody, inasmuch as F(ab')2 fragments of specific antibody did not induce immunity. In addition, Tcs cells could also be induced by Ag-antibody complexes on opsonized TNP-mouse RBC treated with anti-TNP antibody. Immunity induced by cell-bound Ag-antibody complexes was observed only when antibodies of the IgM, IgG3, or IgG1 isotypes are used to generate the complexes. Further studies demonstrated that the Tcs cells induced in this way displayed the phenotype of Tcs cells described in other systems (Lyt-1+,2- I-J+, Vicia villosa lectin-adherent) and released a hapten-specific contrasuppressor factor. These studies indicate that Tcs cells can be induced independently of other T cells (such as the effector cells of contact sensitivity) and are likely to be responsible for some of the immunoregulatory effects of cell-bound Ag-antibody complexes. The role of antibody isotype in the induction of Tcs cells is discussed.  相似文献   

5.
The genetic susceptibility to murine alpha TBM disease is a dominant trait that maps to H-2K. In previous studies we have shown that the critical difference between susceptible (SJL) and nonsusceptible (B10.S(8R] mice is the phenotype of the tubular Ag-specific effector T cells (TDTH). In SJL mice, these TDTH are Lyt-2+, whereas in B10.S(8R) mice the TDTH are L3T4+. These phenotypic differences have an important functional correlate: Lyt-2+ TDTH are nephritogenic, whereas L3T4+ TDTH are typically not nephritogenic. Both mouse strains have the potential to differentiate both L3T4+ and Lyt-2+ TDTH. The preferential selection of a single TDTH phenotype in each is the result of differential T cell regulation. In the present studies, we have examined the contribution of suppressor and contrasuppressor T cells in the regulation of TDTH phenotype selection. Our studies show that in both SJL and B10.(8R) mice, after exposure to Ag, a suppressor T cell subpopulation functions to inhibit the nephritogenic Lyt-2+ TDTH. In SJL, but not B10.S(8R) mice, this suppression is counterbalanced by Lyt-2+, Vicia Villosa lectin-adherent T cells. Such contrasuppressor function is mediated through a T cell-derived soluble protein (TcsF), which is Ag-binding and recognized by alpha I-JS antisera. This functional TcsF activity maps, as does susceptibility to disease, to H-2K. In the presence of genetically compatible TcsF, the TDTH phenotype in nonsusceptible mice switches to that of susceptible mice. These Lyt-2+ TDTH from nonsusceptible mice are fully capable of inducing tubulointerstitial nephritis following adoptive transfer. Our studies describe a new role for Tcs cells and augment our understanding of their etiopathogenetic role in autoimmunity.  相似文献   

6.
The SJL strain of mice possess a unique developmental delay in the ability to exhibit delayed-type hypersensitivity (DTH) responses after immunization with a wide variety of Ag. Similar to other models of DTH, the adoptive transfer of syngeneic Ag-pulsed macrophages from DTH-responsive mice into these DTH-unresponsive mice results in the activation of Ag-specific, CD4+ DTH effector Th1 T cells. The absence of other defects in APC-dependent immune responses indicate that the macrophages is the sole APC required for the induction of DTH effector T cells in SJL mice. The defect occurs during the sensitization phase of the DTH response; however, it has not been determined whether a Th cell, which is required for the induction of CD4+ DTH effector T cells, was present in the DTH unresponsive SJL mice. In this study, we have determined that the Thy-1+ helper cell is induced upon Ag stimulation of nonresponder mice and present evidence for the existence of an accessory cell distinct from the macrophage that induces CD4+ DTH effector T cells. Our data indicate that CD4+ DTH effector T cells are induced in an Ag-specific and MHC-restricted manner by an adherent macrophage that expresses the Mac-1+, Mac-2-, Mac-3+, I-A+ phenotype. Adoptive transfer of as few as 100 of the Mac-1+, Mac-2-, or Mac-3+ subsets from DTH responsive donors to DTH unresponsive recipients is able to overcome the DTH deficit. The activation of CD4+ DTH effector T cells in the SJL mouse cells also requires a Thy-1+, Lyt-1+, CD3-, CD4-, CD8-, helper cell. In contrast to the Mac-1+, Mac-3+, I-A+ accessory cell, this helper cell requires an adherent, irradiation resistant, accessory cell that expresses the Mac-1+, Mac-2-, Mac-3-, I-A- surface phenotype for activation. Further, the interaction between this accessory cell and the Thy-1+ helper cell is neither Ag-specific nor MHC restricted. This is the first demonstration of an accessory cell requirement for the Thy-1+, Lyt-1+, B220-, CD4-, CD8-, CD3- DTH Th cell. These data indicate that the activation of the triple negative helper cells and subsequent activation of the CD4+ effector T cells are regulated by two distinct macrophage subpopulations.  相似文献   

7.
Type III pneumococcal polysaccharide (S3) is unable to activate S3-specific contrasuppressor T cells (Tcs) in mice depleted of B cells by chronic anti-IgM treatment or in immune defective xid mice that lack the B cell subset required for anti-S3 antibody responses. The inability of S3 to activate Tcs in xid mice was shown to be due to a requirement of B cells for Tcs activation rather than to an absence of Tcs in xid mice. The B cells from normal mice that are required for Tcs activation apparently function to present the S3 Ag to Tcs. S3 physically coupled to spleen cells (S3-SC) prepared from normal BCF1 SC could activate Tcs in both xid and BCF1 mice whereas S3-SC prepared from xid SC or B cell-depleted BCF1 SC could not activate Tcs in either strain. B cell APC function was abrogated by 3000 R irradiation and by treatment of the B cells with either chloroquine or paraformaldehyde. Interestingly, B cells from mice previously immunized with S3 were unable to function in Tcs activation; preimmunization of B cell donors with an irrelevant Ag or with a T-dependent form of S3 had no effect on their ability to function as APC. These latter observations are discussed in terms of the in vivo persistence of polysaccharide Ag and their ability to induce B cell tolerance under the experimental conditions used for these experiments. The results of this study provide evidence that B cells play an important and apparently obligatory role in the activation of Tcs by S3; B cells apparently function to present Ag to Tcs, resulting in the activation of this regulatory T cell subset.  相似文献   

8.
A new population of dull Thy-1+, Ly-1-, Lyt-2-, L3T4- PNA- cells, resistant to a double cytotoxic treatment by monoclonal antibodies to these T cell markers plus complement, has been isolated from the spleen of normal adult BALB/c and DBA/2 mice (Tkr cells). These cells exhibit no spontaneous autoreactivity or alloreactivity but can be activated with concanavalin A (Con A). Once activated, they differentiate into bright Thy-1+, Ly-1+, Lyt-2-, L3T4+ PNA- T lymphocytes. Con A-activated Tkr cells also strongly proliferate in the presence of allogeneic or syngeneic dendritic cells in secondary cultures. Moreover, contrary to other Con A-stimulated T cell populations, they induce B lymphocytes to proliferate and to differentiate into Ig-secreting cells at a very high level. Con A-activated Tkr cells are therefore very potent polyclonal B cell activators. Restimulated of Tkr cells by syngeneic dendritic cells can be inhibited by anti-L3T4 or anti-class II monoclonal antibodies. The results suggest that Tkr cells are the precursors of class II-specific autoreactive T helper cells. Tkr cells are absent in the spleen of B6 animals. This indicates that their expression might be genetically controlled. It also suggests that Tkr cells may not be the unique splenic precursors of autoreactive T cells. Con A activation of Tkr cells in Click's medium is 2-mercaptoethanol dependent and highly sensitive to pCO2, like the response of thymocytes. Tkr cells are also absent in the spleen of nude mice. We conclude that Tkr cells represent splenic precursors of autoreactive T helper cells equivalent to Thy-1+, Ly-2-, L3T4- PNA- cortical thymocytes.  相似文献   

9.
Immunoregulation as a consequence of thermal injury was investigated by using a murine model involving a 30% surface area full thickness burn. Both allogeneic mixed lymphocyte reaction (MLR) and in vitro anti-SRBC responses were depressed from days 3 to 25 post-burn. Suppressor T cells could be identified in both systems between days 5 and 15. On day 5 post-burn, an Ly-1+,2-, I-J+ T cell is responsible for the majority of the suppression observed. This cell behaves like a T suppressor inducer T cell in that it must interact with an Ly-2+ cyclophosphamide-sensitive cell to manifest suppression. On day 7 post-burn, only Ly-1-,2+ suppressor T cells are found which can directly suppress the activity of Ly-1+,2- helper T cells. Thus, these cells behave as T suppressor effector cells. We suggest that feedback suppression is in operation after thermal injury, with functional suppressor inducer cells appearing on day 5 post-burn, leading to the appearance of T suppressor effector cells by 7 days post-burn. Recovery from post-burn immunosuppression occurs by day 25 post-burn and is associated with the appearance of V. villosa-adherent T cells, whose activity antagonizes that of the day 7 post-burn suppressor effector. These cells may represent contrasuppressor T cells, which could play a role in the restoration of immunocompetence after burn injury.  相似文献   

10.
(C57BL/6 x DBA/2)F1 mice transplanted with parental C57BL/6 spleen cells become splenic chimeras, show donor antihost cytotoxic T cell activity, and lose their T cell-mediated, humoral, and natural immunity. Injection of anti-asialo-GM1 (ASGM1) into transplanted mice strongly suppresses splenic cytotoxic activity and causes a significant reduction of spleen cells expressing ASGM1, Thy-1, and Lyt-2. In vitro treatment of spleen cells from transplanted mice with antibody and complement shows that the cytotoxic effector cells are ASGM1+, Thy-1+, Lyt-2+, L3T4-, NK1.1-, and H-2d-, hence of donor origin. The cytotoxic effector cells are specific for H-2d targets and lack NK activity. In an attempt to explore whether in vivo elimination of the cytotoxic effector cells has any influence on splenic chimerism or humoral immunity, F1 mice injected with parental splenocytes were treated with anti-ASGM 1. Results show that this treatment eliminates a substantial proportion of cytotoxic effector cells but has no effect on splenic chimerism or restoration of humoral immunity. It therefore appears that cytotoxic effector cells are not primarily responsible for induction of chimerism or suppression of humoral immunity. In support of this injection of parental spleen cells with the nu/nu mutation induces killer cells in F1 mice but fails to induce splenic chimerism or immunosuppression. In contrast, injection of parental spleen cells with the bg/bg mutation generates both splenic chimerism and suppression of humoral immunity although their ability to generate cytotoxic effector cells in F1 hosts is seriously impaired and comparable to the cytotoxic potential of C57BL/6 nu/nu cells. It is concluded that the ASGM1 + cytotoxic T cells are not primarily responsible for splenic chimerism and suppression of humoral immunity and that the two effects are likely caused by parental cells with a different phenotype and function.  相似文献   

11.
Resistant CBA mice infected with Leishmania tropica promastigotes develop concomitant and convalescent immunity against reinfection. This can be adoptively transferred by splenic and lymph node T cells with a threshold dosage of 1 to 2.5 x 10(7). The effector cells are of Thy-1+, Lyt-1+2- phenotype. The same immune cell population also adoptively transfers specific DTH to L. tropica, which is restricted by the major histocompatibility complex. On the other hand, highly susceptible BALB/c mice infected with L. tropica develop antigen-specific suppressor T (Ts) cells (previously shown to inhibit the induction and expression of DTH), which are capable, on transference, of reversing the healing of lesions induced by prior sublethal irradiation of BALB/c mice. As few as 10(6) of these T cells are effective in abrogating the potent prophylactic effect of 550 rad. The Ts cells are of Thy-1+, Lyt-1+2-, and I-J- phenotype. Sublethally irradiated and infected BALB/c mice produce antibody responses quantitatively and isotypically similar during the critical first 40 days after infection whether or not they are injected with 10(7) Ts cells (nonhealing vs healing). Thus, impairment of DTH and curative immune responses in BALB/c mice cannot be attributed to a helper function of these Thy-1+, Lyt-1+2- cells for the formation of suppressive antibody.  相似文献   

12.
Optimally immunogenic amounts of type III pneumococcal polysaccharide (S3) activate a population of contrasuppressor T cells (Tcs), which have been shown to play an important role in the induction of anti-S3 antibody responses. These Tcs belong to a unique T cell subset that has the surface phenotype Lyt 1+2- L3T4- I-J+ I-A+. These Tcs are also cyclophosphamide (Cy)-sensitive and sensitive to antilymphocyte serum (ALS) and mitomycin C. Tcs have antigen-binding receptors, indicating that any interactions of Tcs with B cells or T suppressor cells (Ts) (both of which also have antigen-binding receptors) must be via an antigen bridge rather than an idiotype-anti-idiotype interaction. Tcs are also Igh restricted in their action. Contrasuppression is manifest only when the Tcs are Igh compatible with both the Ts and the responding B cells. Tcs apparently mediate their effects by releasing a soluble factor, since a soluble factor extracted from Tcs is able to abrogate the effects of S3-specific Ts.  相似文献   

13.
The effector T cell repertoire in experimental interstitial nephritis was examined in a variety of susceptible and nonsusceptible mice. We observed that L3T4+ effector T cells in disease-susceptible mice disappear soon after immunization in preference to the emergence of Lyt-2+ effector cells. These latter cells respond with delayed-type hypersensitivity to tubular antigen in the context of H-2K. Such cells also express idiotypes (RE-Id) shared with kidney-bound alpha TBM-Ab that are regulated by an interactional effect of genes in Igh-1 and H-2K. These Lyt-2+ effector cells can be removed from renal infiltrates, and the transfer of similar cells under the renal capsule of naive mice results, within 5 days, in local interstitial nephritis. Nonsusceptible mice, however, not having these immune response genes, produce either L3T4+, Lyt-1+, RE-Id- effector T cells, which only respond to tubular antigen in the context of I-A, or Lyt-2+, RE-Id- T cells, which may lack very fine specificity. These findings suggest that susceptible mice carry a unique set of immune response genes that promote a T cell selection process that operates after induction, during the differentiation and development of disease-producing effector T cells.  相似文献   

14.
Contact sensitivity (CS) reaction mediated by CD 4+8- Th 1 cells is under the control of several antigen-specific regulatory lymphocytes. Reaction is downregulated at the induction stage by T afferent suppressor T cells (Ts-aff) that prevent immunization and at the effector stage by efferent T suppressor cells (Ts-eff) that made immune Th 1 cells inoperative. Both suppressor cells are CD 4-8+ Th 1 effector cells and are protected against the suppressive action of Ts-eff cells by CD 4+8- contrasuppressor T cells (Tcs). As has been already shown there are also regulatory interactions between regulatory cells themselves and Ts-aff cells in addition to their effect on precursors of Th 1 cells, also preventing the induction of Ts-eff cells. The present experiments extend these findings and demonstrate that Ts-eff cells are also under negative control of Tcs lymphocytes. Likewise, antigen-specific factor produced by contrasuppressor T-T cell hybridoma, used in lieu of Tcs cells, impedes the activation of Ts-eff cells. In both cases regulation is aimed at the precursors of Ts-eff cells. Our experiments demonstrate that the outcome of immunization is dependent not only on the balance between immune cells and regulatory cells, but also on interactions between regulatory cells themselves.  相似文献   

15.
Either S3-coupled spleen cells (S3-SC) or soluble S3 activates two populations of regulatory T cells, T suppressor cells (Ts) and contrasuppressor T cells (Tcs). The latter cells function to mask the activity of Ts in unfractionated T cell populations, so that Ts can be detected only after removal of Tcs. Activation of Tcs by S3 may be required for induction of an antibody response to S3. This is suggested by the findings that Tcs are activated only by immunogenic doses of S3, that Tcs are not detectable in the spleens of mice tolerant to S3, and that (CBA/N X BALB/c)F1 male (xid) mice, which are genetically unresponsive to S3, do not develop Tcs after immunization with S3. Moreover, the kinetics of activation of Tcs by S3 closely parallels the kinetics of the antibody response to S3. Tcs have no detectable activity in the absence of Ts, indicating that these cells do not function as amplifier or helper T cells.  相似文献   

16.
Because mice susceptible to interstitial nephritis use different effector T cells than nonsusceptible mice, we analyzed the differentiation process of the effector T cell repertoire by using an in vitro culture technique. In the presence of helper T lymphocytes, accessory cells, IL 2, tubular antigen, and precursor effector cells, both Lyt-2+ nephritogenic effector cells and L3T4+ nonnephritogenic effector cells can be initially induced in both susceptible and nonsusceptible strains within 3 days of culture. In nonsusceptible mice, however, the Lyt-2+ nephritogenic cell is inhibited from further development and disappears, whereas in susceptible mice, its presence is preserved with a resulting effect of tissue destruction. This selection of effector T cell preference is regulated by I-J+ T lymphocytes which are co-functionally expressed with effector cell expansion. Unlike precursor effector lymphocytes, however, the maturation of the regulatory process requires a subset of I-J+ accessory cells and structurally intact tubular antigen. Our findings indicate, therefore, that both susceptible and nonsusceptible mice have the potential for the expression of interstitial nephritis, but nonsusceptible mice are formally protected from autoimmunity by the regulation of lymphocyte preference.  相似文献   

17.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

18.
T cell subsets from virgin and immunized mice, which are Ir gene controlled nonresponders to GAT, which regulate antibody responses to GAT have been characterized. Virgin nonresponder B10.Q B cells develop GAT-specific antibody responses to GAT, B10.Q GAT-M phi, and GAT-MBSA when cultured with virgin or GAT-primed Lyt-1+, I-J-, Qa1- B10.Q helper T cells. Virgin T cells are radiosensitive, whereas immune T cells are radioresistant (750 R); qualitatively identical helper activity is obtained with T cells from mice immunized with soluble GAT, B10.Q GAT-M phi, and GAT-MBSA. Responses to GAT and GAT-M phi are not observed when virgin or GAT-primed Lyt-1+, I-J+, Qal+ T cells are added to culture of virgin or GAT-primed Lyt-1+, I-J-, Qa1- helper T cells and virgin B cells; the GAT-specific response to GAT-MBSA is intact. The Lyt-1+, I-J+, Qa1+ T cells from mice primed with GAT, GAT-M phi, and GAT-MBSA were qualitatively identical in mediating this suppression. Virgin Lyt-2+ T cells have no suppressive activity alone or with virgin Lyt-1+, I-J+, Qa1+ T cells, whereas responses to GAT, GAT-M phi, and GAT-MBSA are suppressed in cultures of GAT-primed helper T cells containing GAT-primed Lyt-2+ T cells (with or without GAT-primed Lyt-1+, I-J+, Qa1+ T cells). Suppression of responses to GAT-MBSA in cultures of GAT-M phi-primed helper T cells requires both GAT-M phi-primed Lyt-1+, I-J+, Qa1+ T cells and Lyt-2+ T cells; the Lyt-1+, I-J+, Qa1+ T cells appear to function as inducer cells in this case. In cultures containing GAT-MBSA-primed helper T cells, either GAT-MBSA-primed Lyt-1+, I-J+, Qa1+ or Lyt-2+ T cells suppress responses to GAT and GAT-M phi; under no circumstances are responses to GAT-MBSA suppressed by GAT-MBSA-primed regulatory T cells. This regulation of antibody responses to GAT by suppressor T cells is discussed in the context of the involvement of suppressor T cells in responses to antigens under Ir control, and of the evidence that nonresponsiveness to GAT is not due to a defect in the T cell repertoire, but rather is due to an imbalance in the activation of suppressor vs helper T cells.  相似文献   

19.
This study was undertaken to characterize and compare T lymphocyte function from the vigorous and modulated liver granulomas of Schistosoma mansoni-infected mice. Although both types of lesion contained equal percentages of T lymphocytes, the T cell subset distribution was different. For vigorous lesions, the ratio of helper/effector to suppressor/cytotoxic T cells was 2 to 3:1. For modulated lesions the ratio was lower (1:1). Differences in the phenotypic profiles of vigorous and modulated granuloma (Gr) T cells were reflected in their functional activity. Vigorous Gr T cells were more active in lymphoproliferation, IL-2 production, and granuloma formation than those from modulated lesions. Moreover, modulated Gr T cells suppressed the functional activity of vigorous Gr T cells in a dose-dependent manner. The selective depletion of T cell subsets showed that phenotypically, the Gr delayed-hypersensitivity T cell is L3T4+, Lyt-1+ whereas the Gr Ts cell is an Lyt-2+ lymphocyte. Both of these T cell subsets are present in vigorous and modulated lesions. During acute infection, delayed-hypersensitivity T cell lymphocyte functions predominate, whereas Ts lymphocyte functions appear to prevail during chronic infection.  相似文献   

20.
T cell subsets responsible for clearance of Sendai virus from mouse lungs determined by adoptive transfer of immune spleen cell fractions to infected nude mice. T cells with antiviral activity developed in spleens by 7 days after intranasal infection. Spleen cell fractions depleted of Lyt-2+, Lyt-1+, or L3T4+ cells showed antiviral activity in vivo, although the degree of the activity was lower than that of control whole spleen cells. The antiviral activity of the Lyt-2+ cell-depleted fraction was consistently higher than that of L3T4+ (Lyt-1+)-depleted cells. In vitro cytotoxic activity against Sendai virus-associated, syngeneic lipopolysaccharide-blast cells was detected in stimulated cells from intraperitoneally immunized mice but was lost after depletion of Lyt-2+ cells. Multiple injection of anti-Sendai virus antibody into infected nude mice had no effect on lung virus titer. These results indicate that L3T4+ (Lyt-1+) and Lyt-2+ subsets are cooperatively responsible for efficient clearance of Sendai virus from the mouse lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号