首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang SU  Lubec G 《Proteomics》2011,11(3):481-484
Until now quantification of proteins in gel-based methods relies on the amount of protein loaded onto the gel. This does not, however, represent the amount of proteins in the gel and therefore determination of proteins within the gel is mandatory. A method to quantify proteins, both hydrophilic and hydrophobic, using in-gel digestion with proteases, subsequent acid hydrolysis and the use of the ninhydrin reaction is herein presented.  相似文献   

2.
An efficient protocol for in-gel digestion of Coomassie-stained protein spots has been established for mass analysis by matrix-assisted laser desorption/ionization-mass spectrometry (MS) and for tandem mass spectrometry (MS/MS). Identification of Vigna mungo leaf proteome from two-dimensional gel electrophoresis was done employing the protocol. About 300 proteins spots were consistently detected in three replicate gels. Optimization of the destaining process, digestion using 25 ng/μl trypsin in 20 μl trypsin buffer, and omission of peptide extraction step significantly increased the number of matched peptides and sequence coverage. Reliable characterization of 109 proteins by MS as well as tandem sequencing by MS/MS (PRIDE Accession no. 15318) suggests the potential application of the modified protocol for high throughput proteome analysis to unravel disputes in characterization of plant proteins in fundamental or applied research.  相似文献   

3.
The protocol consists of running a native gel with in-gel digestion by proteases, subsequent mass spectrometrical determination of protein sequence and modifications, followed by electro-elution and conformational analysis using melting point and circular dichroism. Finally, the eluted protein is tested for preserved function. Herein, C1 esterase inhibitor is applied on a native gel; in-gel digestion by proteases is carried out and peptides are identified by nano-LC-ESI-CID/ETD-MS/MS using an ion trap for generation of peptide sequences and protein modifications. Protein from replicate bands from the same gel is electro-eluted and used for determination of the melting point and used for circular dichroism analysis. Additional bands from the native gel are either in-gel digested with asparaginase to generate deamidation or PNGase F for deglycosylation, followed by mass spectrometry, conformational and functional studies. Preserved conformation and function of the C1 esterase inhibitor was shown. This protocol can be completed in 1 week.  相似文献   

4.
Separation and identification of hydrophobic membrane proteins is a major challenge in proteomics. Identification of such sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins by peptide mass fingerprinting (PMF) via matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) is frequently hampered by the insufficient amount of peptides being generated and their low signal intensity. Using the seven helical transmembrane-spanning proton pump bacteriorhodopsin as model protein, we demonstrate here that SDS removal from hydrophobic proteins by ion-pair extraction prior to in-gel tryptic proteolysis leads to a tenfold higher sensitivity in mass spectrometric identification via PMF, with respect to initial protein load on SDS-PAGE. Furthermore, parallel sequencing of the generated peptides by electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) was possible without further sample cleanup. We also show identification of other membrane proteins by this protocol, as proof of general applicability.  相似文献   

5.
In-gel digestion of proteins isolated by gel electrophoresis is a cornerstone of mass spectrometry (MS)-driven proteomics. The 10-year-old recipe by Shevchenko et al. has been optimized to increase the speed and sensitivity of analysis. The protocol is for the in-gel digestion of both silver and Coomassie-stained protein spots or bands and can be followed by MALDI-MS or LC-MS/MS analysis to identify proteins at sensitivities better than a few femtomoles of protein starting material.  相似文献   

6.
We compared the use of wet and dry two-dimensional electrophoresis (2-DE) gels for in-gel tryptic digestion and subsequent analysis by mass spectrometry, first using bovine serum albumin (BSA) as a model protein and then using unknown proteins from an extract of the silkworm midgut. The gel was either dried at 80 degrees C or left wet. Upon analysis of BSA, there was little difference in peptide recovery from 2-DE or in mass spectrum between the dry and the wet gels. The midgut extract was resolved into more than 1,100 protein spots by 2-DE, and 40 of these spots were sampled for further analysis. For all of the 40 proteins, the results obtained from dry and wet gels were quite similar in mass spectra and protein identification, although the relative amounts of peptides from tryptic digestion ranged from 45 to 146%. Based on these results, we confirmed the utility of dry electrophoretic gels for proteomics of insect extracts.  相似文献   

7.
2,2,2-Trichloroethanol (TCE) incorporated into polyacrylamide gels before polymerization provides fluorescent visible detection of proteins in less than 5min of total processing time. The tryptophans in proteins undergo an ultraviolet light-induced reaction with trihalocompounds to produce fluorescence in the visible range so that the protein bands can be visualized on a 300-nm transilluminator. In a previous study trichloroacetic acid or chloroform was used to stain polyacrylamide gel electrophoresis (PAGE) gels for protein visualization. This study shows that placing TCE in the gel before electrophoresis can eliminate the staining step. The gel is removed from the electrophoresis apparatus and placed on a transilluminator and then the protein bands develop their fluorescence in less than 5min. In addition to being rapid this visualization method provides detection of 0.2microg of typical globular proteins, which for some proteins is slightly more sensitive than the standard Coomassie brilliant blue (CBB) method. Integral membrane proteins, which do not stain well with CBB, are visualized well with the TCE in-gel method. After TCE in-gel visualization the same gel can then be CBB stained, allowing for complementary detection of proteins. In addition, visualization with TCE in the gel is compatible with two-dimensional PAGE, native PAGE, Western blotting, and autoradiography.  相似文献   

8.
Yu Y  Cui J  Wang X  Liu Y  Yang P 《Proteomics》2004,4(10):3112-3120
Acetylation is a single labeling process to label peptides in control and experimental samples universally, and is independent of amino acid composition or post-translational modification. Here, we propose a new strategy especially useful to quantify either hydrophobic or extremely acidic and basic proteins involved in acetylation of tryptic peptides after sodium dodecyl sulfate polyarcylamide gel electrophoresis (SDS-PAGE) separation. We studied some essential parameters of acetylation labeling reactions in either in-solution tryptic peptides or in-gel digested extracts systematically. We have found that the acetylation efficiency varies markedly on account of different reactive systems, and demonstrated that stable isotope labeling can be steadily obtained with in-gel digested peptides under optimized conditions. We use this protocol to quantify some proteins of two kinds of hepatocellular carcinoma cell line, non-metastatic hepatocellular carcinoma cells, Hep3B, and metastatic hepatocellular carcinoma cells, MHCC97-H. The experimental results provide positive evidence for the potential application of an acetylation labeling strategy in quantitative proteomics, and an efficient way for global proteome quantification.  相似文献   

9.
A protocol was established for two-dimensional gel electrophoresis (2-DE) of barley seed and malt proteins in the pH range of 6-11. Proteins extracted from flour in a low-salt buffer were focused after cup-loading onto IPG strips. Successful separation in the second dimension was achieved using gradient gels in a horizontal SDS-PAGE system. Silver staining of gels visualized around 380 (seed) and 500 (malt) spots. Thirty-seven different proteins from seeds were identified in 60 spots, among these 46 were visualized also in the malt 2-D pattern. Proteins were identified by peptide mass fingerprinting and by tandem MS sequencing after in-gel digestion by trypsin. In addition, the N-terminal sequence of 10 different proteins from 11 spots was determined after electroblotting to a polyvinylidene difluoride (PVDF) membrane. Five identified proteins (in 9 spots) are involved in glycolysis, 12 in defence against pathogens (21 spots), 4 in storage, folding, and synthesis of proteins, and in nitrogen metabolism (5 spots), 6 in carbohydrate metabolism (11 spots), and 4 in stress and detoxification (9 spots). Six proteins (7 spots) were not grouped in these categories, and 3 were not ascribed a function. The presented 2-D patterns and identifications will be used to describe proteome differences between cultivars and changes during malting.  相似文献   

10.
Vascular endothelial proteins have been analyzed using two-dimensional (2D) gel electrophoresis and subsequent mass spectrometry, with separate methods for the intervening sample preparations. Compact disc (CD) technology was found to be rapid, giving high overall yield both with ordinary Coomassie staining and with Sypro Ruby staining. Combined with automatic in-gel digestion, the CD technology has great capacity for large numbers of protein analysis, although for limited sample numbers, manual methods can give similar sequence coverage. In a test set of 48 samples, 45 proteins were identified using the CD preparation technique, 32 identified with higher sequence coverage using the CD technique, 7 with higher using ZipTips in a robotic workstation, and 5 with higher coverage using dried droplets of unpurified samples. In the process of these methodological comparisons, basic patterns for 116 endothelial proteins were defined, representing 297 separate protein spots on the 2D gels.  相似文献   

11.
12.
In an effort to simplify a complex mixture of soluble proteins from Escherichia coli, methods to fractionate the samples prior to two-dimensional (2D) gel electrophoresis were developed. These methods involve the use of DEAE-Sepharose, SP-Sepharose, and phenyl Sepharose chromatographic columns and the fractionation of the protein mixtures based on differential anionic, cationic, and hydrophobic properties of the proteins, respectively. Fractionation of the soluble proteins from an E. coli extract with DEAE-Sepharose resulted in a threefold increase in the number of detectable 2D gel spots. These gel spots were amenable to protein identification by using in-gel trypsin digestions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and peptide mass fingerprinting. Significantly, the DEAE-Sepharose column fractionation effectively partitioned the soluble proteins from the cell extracts. Similarly, an SP-Sepharose column was used to fractionate the soluble proteins from E. coli and resulted in over a twofold increase in the number of detectable gel spots. Lastly, fractionation of the cell extract with the phenyl Sepharose column resulted in a threefold increase in the number of detectable 2D gel spots. This work describes an easy, inexpensive way to fractionate the soluble proteins in E. coli and a way to better profile the E. coli proteome.  相似文献   

13.
Wittig I  Schägger H 《Proteomics》2008,8(19):3974-3990
1-D native electrophoresis is used for the separation of individual proteins, protein complexes, and supercomplexes. Stable and labile protein-protein interactions can be identified depending on detergent and buffer conditions. 1-D native gels are immediately applicable for in-gel detection of fluorescent-labeled proteins and for in-gel catalytic activity assays. 1-D native gels and blots are used to determine native mass and oligomeric state of membrane proteins. Protein extracts from 1-D native gels are used for generation of antibodies, for proteomic work, and for advanced structural investigations. 2-D separation of subunits of protein complexes by SDS-PAGE is mostly used for immunological and proteomic studies. Following the discussion of these general features, specific applications of native electrophoresis techniques in various research fields are highlighted: immunological and receptor studies, biogenesis and assembly of membrane protein complexes, protein import into organelles, dynamics of proteasomes, proteome and subproteome investigations, the identification and quantification of mitochondrial alterations in apoptosis, carcinogenesis, and neurodegenerative disorders like Parkinson's disease, Alzheimer's disease, and the vast variety of mitochondrial encephalomyopathies.  相似文献   

14.
Protein bands become visible in polyacrylamide gels containing 8 m urea after chilling the gels in air for 5 to 10 min at ?70°C. Urea appears to crystallize preferentially as opaque bands in regions of the gel where protein reduces the amount of free water available as solvent for the urea molecules. Thus detected, the gel sections containing protein bands from foot-and-mouth disease virus can be immediately cut out, and their proteins obtained by electrophoretic elution or extraction procedures. Analysis of the proteins for purity and concentration is then carried out by electrophoresing measured aliquots on analytical gels, staining with Coomassie brilliant blue, scanning the gels for absorbance at 600 nm, and converting peak areas to micrograms of protein using Folin phenol standard curves determined for each purified capsid protein. The most basic capsid protein and its in virion proteolytic-cleavage products stain metachromatically.  相似文献   

15.
Superoxide dismutase (SOD) in-gel activity assay with selective inhibitors (KCN and H2O2) is one of the most commonly used methods for identification of SOD isoform types, i.e., FeSOD, MnSOD or Cu/ZnSOD, and evaluation of oxidative stress response in plants. However, there are potential pitfalls that surround this assay, such as problem to detect isoforms with low activity, comigration of SOD isoforms or application of inappropriate inhibitor concentration. We propose an improved method based on the combination of in-gel analysis of SOD activity and native-PAGE immunoblotting for identification of isoforms and determination of SOD isoenzyme activity pattern in potato. Depending on cultivar and growing conditions, one MnSOD, 3 FeSOD and 5–6 Cu/ZnSOD isoforms were identified in potato leaves. The most important qualitative difference between ex vitro- and in vitro-grown plants was the presence of additional FeSOD and Cu/ZnSOD isoforms in plantlets grown in vitro. Compared with results of in-gel activity assay with selective inhibitors, new method allowed accurate identification of comigrating FeSOD and Cu/ZnSOD isoforms and two protein bands of ambiguous identities. Potato SODs were also characterized by SDS-PAGE immunoblotting and single MnSOD (23.6 kDa), three Cu/ZnSOD polypeptides (17.9, 17 and 16.3 kDa) and single FeSOD (25.1 kDa) polypeptide were detected in leaves of four examined cultivars. The difference in the number of FeSOD and Cu/ZnSOD isoforms/polypeptides between native-PAGE and SDS-PAGE immunoblots suggests that SOD proteins may have undergone post-translational modifications affecting protein mobility or existence of isoforms that differ from each other in total protein charge, but not in molecular weight.  相似文献   

16.
Reports describing polyacrylamide gel electrophoresis patterns of bovine hydrophobic surfactant proteins are not consistent. In this study, we found unusual staining characteristics of these proteins that may explain some of these inconsistencies. Low molecular weight surfactant proteins extracted from bronchoalveolar lavage with organic solvent are partially delipidated with Sephadex LH-20 chromatography using chloroform and methanol. Fractions from the first protein peak are dried under nitrogen then subjected to SDS electrophoresis on 20% polyacrylamide gels. Under nonreducing conditions, silver staining identifies 5- and 26-kDa bands, and Coomassie blue identifies 6-, 12-, and 26-kDa bands. When gels are stained with Coomassie blue then silver, the 5- and 26-kDa bands stain with silver and 6- and 12-kDa bands remain stained with Coomassie blue. If gels are first stained with silver then Coomassie blue, similar results occur. We modified the silver staining protocol by treating gels with dithiothreitol or 2-mercaptoethanol after electrophoresis. With this modification, 5-, 6-, 12-, 26-, and also 17-kDa bands are identifiable. Using the modified protocol and restaining gels previously stained with silver, 6-, 12-, and 17-kDa bands that were not identified previously all became visible. In further experiments, protein bands of 6-, 12-, and 26-kDa that were identified by Coomassie blue were electroeluted under nonreducing conditions. After electrophoresis of the eluted 26-kDa protein, bands of 17-, and 26-kDa under nonreducing, and 8-kDa only under reducing conditions, were apparent by using the modified silver protocol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chen WQ  Kang SU  Lubec G 《Nature protocols》2006,1(3):1446-1452
Protein profiling in the high-throughput mode is a most useful technique that allows formation of reference databases for cells and tissues and performance of comparative proteomics. In the proposed protocol protein extraction from tissues is followed by 2D gel electrophoresis (2DE) with subsequent in-gel digestion and identification of soluble proteins by two individual mass spectrometric techniques, tandem matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and nano-liquid chromatography (nano-LC)-MS/MS. The proposed combined use of these two MS approaches leads to a very high identification rate of well-separated protein spots from a gel. In the first step 2DE separates high-abundance proteins (those visualized by nonsensitive Coomassie blue staining) that are subsequently picked, digested and aliquoted for MS applications. Protein samples not identified by MALDI-MS or MS/MS (77% of all spots) are finally unambiguously identified by nano-LC-MS/MS (total identification rate 94%). This protocol can be completed in 6 weeks.  相似文献   

18.
We have developed a simple one-step 30-min method for fluorescent visualization of proteins in native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) gels. The method is based on formation of strong fluorophores via potassium ferricyanide-provoked oxidation of tryptophan (Trp). Following PAGE, gels are soaked in water solution of potassium ferricyanide (100 mM) and NaOH (1 M) and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method was slightly lower compared with standard Coomassie Brilliant Blue (CBB) staining. The method can be useful when rapid acquisition of data is of the essence. After preview, gels can be post-stained using the CBB protocol for further analysis. The intensity of fluorescence is dependent on Trp number, so the protocol might find application in the quantification of Trp residues as illustrated here. Importantly, there is room for improvement of the method. Namely, according to excitation–emission matrix analysis of stained protein bands, maximal fluorescence intensity (at 345/460 nm) was 3.5-fold higher compared with the settings that were available on a commercial imager (395/525 nm). As a supplement, we present an upgrade of the previously described method for in-gel detection of non-heme iron-binding proteins that also employs potassium ferricyanide.  相似文献   

19.
In biological membranes many proteins are organized in complexes. The method of choice for the global analysis of the subunits of these complexes is two-dimensional blue native (2D BN)/SDS-PAGE. In the 1st dimension complexes are separated by BN-PAGE, and in the 2nd dimension their subunits are resolved by SDS-PAGE. In the currently available protocols the 1st dimension BN gel lanes get distorted during their transfer to the 2nd dimension separation gels. This leads to low reproducibility and high variation of 2D BN/SDS-gels, rendering them unsuitable for comparative analysis. We have developed a 2D BN/SDS-PAGE protocol where the 1st dimension BN gel is cast on a GelBond PAG film. Immobilization prevents distortion of BN gel lanes, which lowers variation and greatly improves reproducibility of 2D BN/SDS-gels. 2D BN/SDS-PAGE with an immobilized 1st dimension was used for the comparative analysis of the cytoplasmic membrane proteomes of Escherichia coli cells overexpressing a membrane protein and to create a 2D BN/SDS-PAGE reference map of the E. coli cytoplasmic membrane proteome with 143 identified proteins from 165 different protein spots.  相似文献   

20.
We have investigated the use of a variety of different techniques to identify as many proteins as possible in a yeast lysate, with the aim of investigating the overlap and complementarity of data from different approaches. A standard lysate was prepared from log phase yeast (Saccharomyces cerevisiae). This was then subjected to analysis via five different approaches aimed at identifying as many proteins as possible using an ion trap mass spectrometer. The total number of non-redundant protein identifications from each experiment was: 524 proteins by 2-D (SCX/C18) nanoflow liquid chromatography-liquid chromatography tandem mass spectrometry (nanoLC-LC MS/MS (MudPIT)); 381 proteins by nanoLC-MS/MS with gas phase fractionation by mass range selection; 390 proteins by nanoLC-MS/MS with gas phase fractionation by ion abundance selection; 898 proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, in-gel digestion, and nanoLC-MS/MS of gel slices; and 422 proteins by isoelectric focusing of proteins, in-gel digestion and nanoLC-MS/MS of gel slices. The total number of non-redundant protein identifications in the five experiments was 1204. Combining only the two best experiments, the SDS-PAGE gel slices and the Mudpit, produces 1024 proteins identified, more than 85% of the total. Clearly, combining a Mudpit analysis with an SDS-PAGE gel slice experiment gives the greatest amount of protein identification information from a limited amount of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号