首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
NDRG2基因在多种肿瘤中均低表达或不表达,而过表达NDRG2则能降低肿瘤的恶性程度,这些研究结果表明NDRG2具有肿瘤抑制作用,但是其确切的作用机制尚不是十分清晰。本文通过综述NDRG2与c-Myc和p53的关系,为探究NDRG2抑制肿瘤的确切机制提供线索。  相似文献   

2.
NDRG1 的功能及其与癌症的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
细胞生长、分化和多种应激的情况都可以影响NDRG1(N-myc downstream-regulated gene 1)蛋白的表达水平。NDRG1在许多细胞的正常生理功能中起着重要作用,NDRG1的缺乏可能导致多种疾病,如4D型CMTD(夏-马-图三氏病进行性神经性肌萎缩,Charcot-Marie-Tooth disease)的发生与施万细胞中NDRG1的缺失有关。在多种癌细胞系中,NDRG1的转录和翻译与肿瘤的分化和转移有关。在缺氧环境中,NDRG1的表达水平上调,而且在许多肿瘤细胞中都存在缺氧的现象,这使得NDRG1与缺氧和癌症之间存在着复杂的关系。NDRG1与癌症的关系使得NDRG1可能作为肿瘤演进的标识和癌症诊断的辅助工具。  相似文献   

3.
目的:探讨肺腺癌细胞中NDRG2基因启动子甲基化状态及其与基因表达的关系。方法:甲基化焦磷酸测序技术检测启动子区域甲基化状态,荧光定量PCR技术检测不同药物浓度下培养细胞中NDRG2基因mRNA的表达水平,分析启动子区域甲基化与基因表达之间的关系。结果:在体外培养细胞中检测到NDRG2基因启动子区域呈现不同程度的甲基化,甲基化频率分别为肺癌A549细胞71.8%、GLC-82细胞86.1%、人脐静脉内皮ECV-304细胞36.8%、胃上皮GES-1细胞42.9%。NDRG2基因mRNA表达与其启动子甲基化程度成反比,甲基转移酶抑制剂5-杂氮-2-脱氧胞苷(5-Aza-CdR)作用于细胞后,A549和GLC-82细胞中NDRG2基因的mRNA转录明显上调,至72 h差异显著(P0.05)。结论:肺腺癌细胞中NDRG2基因启动子CpG岛存在高甲基化,甲基化程度与该基因的表达具有负相关性,5-Aza-CdR能在一定程度上提高NDRG2的转录水平。  相似文献   

4.
赵妍  白翠红 《生物磁学》2011,(19):3798-3800,3793
细胞生长、分化和多种应激的情况都可以影响NDRGI(N-myc downstream-rvgulatcd gene 1)蛋白的表达水平。NDRG1在许多细胞的正常生理功能中起着重要作用。NDRG1的缺乏可能导致多种疾病,如.碡D型CMTD(夏-马-图三氏病进行性神经性肌萎缩,Charcot-Marie-Toothdisease)的发生与施万细胞中NDRG1的缺失有关。在多种癌细胞系中。NDRG1的转录和翻译与肿瘤的分化和转移有关。在缺氧环境中。NDRG1的表达水平上调,而且在许多肿瘤细胞中都存在缺氧的现象,这使得NDRG1与缺氧和癌症之间存在着复杂的关系。NDRGI与癌症的关系使得NDRG1可能作为肿瘤演进的标识和癌症诊断的辅助工具。  相似文献   

5.
目的:构建与鉴定NDRG2基因全身敲除的阿尔茨海默症(AD)小鼠模型。方法:将NDRG2-/-、APP/PS1进行饲养杂交繁殖,将通过PCR技术鉴定基因型为NDRG2+/-APP/PS1的子一代小鼠再与NDRG2-/-小鼠回交获得子二代小鼠,提取子二代小鼠的基因组DNA再利用PCR方法:扩增NDRG2和APP/PS1基因片段并进行琼脂糖凝胶电泳检测获得4种基因型的小鼠。结果:选取基因型为NDRG2-/-APP/PS1的小鼠即为全身NDRG2敲除且淀粉样蛋白基因过表达的阿尔茨海默症模型小鼠。应用PCR方法:鉴定NDRG2基因全身敲除的AD小鼠模型。成功获得NDRG2基因全身敲除的AD小鼠,该基因型小鼠有繁殖能力,其繁殖符合孟德尔遗传规律。结论:成功构建NDRG2基因敲除的阿尔茨海默症模型小鼠,为进一步研究NDRG2基因在阿尔茨海默症病理发展过程中的作用机制及新的治疗方法的研究提供模型基础。  相似文献   

6.
目的:探讨N-myc下游调节基因1(N-myc downstream-regulated gene 1,NDRG1)在乳腺癌中表达。方法:收集乳腺癌病例及相应的临床资料包括随访资料,应用免疫组织化学技术检测良性病变(BBD)47例,无淋巴结转移乳腺癌(NMBC)83例,有淋巴结转移乳腺癌(MBC)107例及配对淋巴结转移灶(PLNM)107例中NDRG1的表达,分析NDRG1表达与乳腺癌临床病理指标间(患者年龄、肿块大小、临床分期、组织学类型和分级、淋巴结转移、雌孕激素受体和c-erb B2水平、绝经史)及生存状态的关系。结果:通过免疫组化技术检测乳腺癌中NDRG1的表达,结果显示阳性表达率分别为BBD(95.7%,45/47),NMBC(96.4%,80/83),MBC(98.1%,105/107),PMLN(90.7%,97/107),MBC组织中NDRG1阳性表达率显著高于PMLN中阳性表达率(P=0.021)。NDRG1与组织学分级相关(P=0.041),即分化越差的癌表达NDRG1越强。NDRG1的表达状态与乳腺癌患者的生存预后无显著性相关(P=0.196)。结论:NDRG1表达与乳腺癌淋巴结转移和分化有一定关系。  相似文献   

7.
目的研究MAT2A(甲硫氨酸腺苷转移酶2A)和NDRG2(N-Myc下游调节基因-2)基因在结直肠癌组织中的表达及两者的相关性,为结直肠癌的研究及治疗提供重要参考。方法选取68例术中切除结直肠癌组织及相应的癌旁组织标本,应用RT-PCR(逆转录-聚合酶链式反应)和Western blotting(蛋白质印迹法)检测结直肠癌中MAT2A和NDRG2表达水平。结果结直肠癌中MAT2A和NDRG2mRNA表达情况:MAT2A阳性表达率(66.2%,45/68)高于癌旁组织(7.4%,5/68);NDRG2阳性表达率(36.8%,25/68)低于癌旁组织(91.2%,62/68);两者的表达与患者年龄、性别、肿瘤生长位置等因素均无关,与癌肿临床分期、分化水平及淋巴结转移密切相关。癌肿组织中MAT2A蛋白表达量相较于癌旁组织明显增多(t=39.1152,P=0.0000),而癌肿组织中NDRG2蛋白表达量较癌旁组织明显降低(t=46.5103,P=0.0000);且在结直肠癌组织中两基因的表达可能有相关性(χ~2=7.41,P=0.009)。结论在结直肠癌组织中MAT2A表达增高,NDRG2表达下降,两者与肿瘤的发生发展具有一定相关性,推测可能与DNA甲基化异常有关,但具体机制仍待进一步研究。  相似文献   

8.
目的:在pEGFP-C2真核表达载体中表达人NDRG2基因的截短部分并进行鉴定.方法:以含有人NDRG2基因的pGKBT7质粒为模板,通过PCR的方法扩增获得截短的人NDRG2基因,然后克隆入表达载体pEGFP-C2;以荧光显微镜观察和WesternBlotting方法对表达产物进行鉴定.结果:表达产物中在分子量67kD左右可见与目的蛋白分子量相符的条带,该条带可被Ndrg2单克隆抗体特异性识别.结论:构建了截短的人NDRG2基因真核表达载体,并在真核细胞中(HEK-293)获得成功表达.  相似文献   

9.
目的:抑癌基因N-myc下游调节基因2(N-myc down stream regulated gene 2,NDRG 2)在抑制肿瘤的发生及进展过程中具有重要作用,本研究旨在区分并鉴定NDRG2基因mRNA的6种可变剪接体。方法:针对NDRG2基因mRNA6种剪接体外显子的差别设计6对特异性引物。分别从正常人脑组织和胶质瘤细胞U251中提取总RNA,反转录为cDNA,利用高保真酶扩增目的剪接体DNA,并根据PCR扩增产物电泳条带的有无和大小初步判断剪接体的型别,最后将PCR产物胶回收进行测序鉴定。结果:利用本实验中设计的引物可以将人脑组织和U251胶质瘤细胞中的NDRG 2基因mRNA剪接体经行分型鉴定,确定了分型引物的可行性。人脑组织和U251细胞中均含有A、B、D和E四种剪接体。结论:利用本研究设计的特异性引物进行PCR扩增,可以判断某种细胞或组织中表达的NDRG2mRNA分子剪接体的型别。有助于未来深入研究抑癌基因NDRG2在肿瘤发生发展中的抑制作用与不同剪接体的表达相关性。  相似文献   

10.
目的该实验通过对糖尿病小鼠和正常小鼠胰岛、心肌和肾中NDRG2表达的研究,旨在阐明NDRG2在糖尿病小鼠和正常小鼠中的表达差异,为进一步明确分化相关基因NDRG2的功能提供依据。方法分离糖尿病小鼠和正常小鼠的胰腺、心肌和肾,并制备成石蜡切片,用抗NDRG2单克隆抗体,进行免疫组织化学染色(ABC法),从蛋白质水平观察NDRG2的表达情况。统计阳性细胞数,用统计学方法,判断糖尿病小鼠和正常小鼠中NDRG2的表达有无差别。结果免疫组织化学染色显示:①胰腺中NDRG2特异表达在胰岛细胞胞浆,相对正常小鼠而言Ⅱ型糖尿病小鼠胰岛中NDRG2表达略增强,Ⅰ型糖尿病小鼠胰岛中NDRG2表达略减弱;②心脏中NDRG2特异表达在心肌细胞胞浆,Ⅱ型糖尿病小鼠心肌细胞中NDRG2分布局限,正常小鼠心肌细胞中NDRG2分布均匀;③肾脏中NDRG2特异表达在肾小管上皮细胞的细胞浆,Ⅰ型糖尿病小鼠中肾小管上皮细胞出现空泡样变性。结论NDRG2在糖尿病小鼠和正常小鼠胰腺、心肌和肾中的表达差异提示NDRG2作为分化相关基因可能参与糖尿病的致病机制。  相似文献   

11.
RTP/Drg1/Cap43/rit42/TDD5/Ndr1/NDRG1 (referred to as NDRG1 hereafter) is a cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation. Recently, the mutation of this gene was reported to be causative for hereditary motor and sensory neuropathy-Lom. Here, we cloned two human cDNAs encoding NDRG3 and NDRG4, which are homologous to NDRG1. These two genes, together with NDRG1 and a previously deposited cDNA (designated NDRG2), constitute the NDRG gene family. The four members share 57-65% amino acid identity. NDRG4 was further characterized because its mRNA expression was quite specific in brain and heart, in contrast to the relatively ubiquitous expression of the other three members. NDRG4 mRNA consists of three isoforms, NDRG4-B, NDRG4-B(var), and NDRG4-H. Northern and Western blot analyses showed that NDRG4-B was expressed only in the brain, whereas NDRG4-H was expressed in both brain and heart. NDRG4-B(var) was a minor product. NDRG4 expression was more abundant in adult than fetal brain and heart and was markedly decreased in the Alzheimer's diseased brain. In situ hybridization showed that NDRG4 was localized in neurons of the brain and spinal cord. The NDRG4 gene contains 17 exons. mRNA expression of the three NDRG4 isoforms is regulated by alternative splicing and possibly by alternative promoter usage. The finely tuned expression of the NDRG gene family members suggests that they have different specific functions.  相似文献   

12.
The N-myc downstream-regulated gene (NDRG) family consists of four proteins: NDRG1, NDRG2, NDRG3, and NDRG4 in mammals. NDRG1 has been thoroughly studied as an intracellular protein associated with stress response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D. We previously generated Ndrg1-deficient mice and found that they exhibited peripheral nerve degeneration caused by severe demyelination, but that the complicated motor abilities were retained. These results implied that other NDRG family proteins may compensate for the NDRG1 deficiency in the central nervous system. In this study we raised specific antibodies against each member of the NDRG protein family and examined their cellular expression patterns in the mouse brain. In the cerebrum, NDRG1 and NDRG2 were localized in oligodendrocytes and astrocytes, respectively, whereas NDRG3 and NDRG4 were ubiquitous. In the cerebellum, NDRG1 and NDRG4 were localized in Purkinje cells and NDRG2 in Bergmann glial cells. NDRG3 was detected in the nuclei in most cells. These expression patterns demonstrated the cell type-specific and ubiquitous localization of the NDRG family proteins. Each NDRG may play a partially redundant role in specific cells in the brain.  相似文献   

13.
NDRG4 is a member of the N-myc downregulated gene family (NDRG) belonging to the alpha/beta hydrolase superfamily. We have previously documented discrepancy between our analysis of the expression and function of NDRG4 in glioblastoma multiforme (GBM) and a recent publication by Schilling et al., who reported that NDRG4 is upregulated in GBM compared to human cortex tissues and knock down of NDRG4 reduced the viability of GBM cells. In the present study, we found that NDRG4 is indeed downregulated, at both RNA and protein levels, by quantitative RT-PCR and Western blot analysis, in GBM compared to normal tissues, and that over expression of NDRG4 inhibited proliferation of GBM cells. These new observations can inform the selection of lead molecular compounds for drug discovery as well as novel diagnostics for GBM. They also lend evidence to NDRG4 a role of tumor suppressor.  相似文献   

14.
The N-myc downstream regulated gene (NDRG) family members are dysregulated in several tumors. Functionally, NDRGs play an important role in the malignant progression of cancer cells. However, little is known about the potential implications of NDRG4 in pancreatic ductal adenocarcinoma (PDAC). The aim of the current study was to elucidate the expression pattern of NDRG4 in PDAC and evaluate its potential cellular biological effects. Here, we firstly report that epigenetic-mediated silencing of NDRG4 promotes PDAC by regulating mitochondrial function. Data mining demonstrated that NDRG4 was significantly down-regulated in PDAC tissues and cells. PDAC patients with low NDRG4 expression showed poor prognosis. Epigenetic regulation by DNA methylation was closely associated with NDRG4 down-regulation. NDRG4 overexpression dramatically suppressed PDAC cell growth and metastasis. Further functional analysis demonstrated that up-regulated NDRG4 in SW1990 and Canpan1 cells resulted in attenuated mitochondrial function, including reduced ATP production, decreased mitochondrial membrane potential, and increased fragmented mitochondria. However, opposite results were obtained for HPNE cells with NDRG4 knockdown. These results indicate that hypermethylation-driven silencing of NDRG4 can promote PDAC by regulating mitochondrial function and that NDRG4 could be as a potential biomarker for PDAC patients.  相似文献   

15.
As a master switch for cell proliferation and differentiation, Myc exerts its biological functions mainly through transcrip-tional regulation of its target genes, which are involved in cells' interaction and communication with their external environment. The N-Myc downstream-regulated gene ( NDRG ) family is composed of NDRG1, NDRG2, NDRG3 and NDRG4 , which are important in cell proliferation and differentiation. This review summarizes the recent studies on the structure, tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.  相似文献   

16.
17.
NDRG1(N-Myc downstream regulated) is upregulated during cell differentiation, repressed by N-myc and c-myc in embryonic cells, and suppressed in several tumor cells. A nonsense mutation in the NDRG1 gene has been reported to be causative for hereditary motor and sensory neuropathy-Lom (HMSNL), indicating that NDRG1 functions in the peripheral nervous system necessary for axonal survival. Here, we cloned three human cDNAs encoding NDRG2 (371aa), NDRG3 (375aa) and NDRG4 (339aa), which are homologous to NDRG1. These three genes, together with NDRG1, constitute the NDRG gene family. The phylogenetic analysis of the family demonstrated that human NDRG1 and NDRG3 belong to a subfamily, and NDRG2 and NDRG4 to another. At amino acid (aa) level, the four members share 53–65% identity. Each of the four proteins contains an / hydrolase fold as in human lysosomal acid lipase. Expression of the fusion proteins NDRG2/GFP, NDRG3/GFP and NDRG4/GFP in COS-7 cells showed that all of them are cytosolic proteins. Based on UniGene cluster analysis, the genes NDRG2, NDRG3 and NDRG4 are located at chromosome 14q11.1–11.2, 20q12–11.23 and 16q21–22.1, respectively. Northern and dot blot analysis shows that all of the three genes are highly expressed in adult brain and almost not detected in the eight human cancer lines. In addition, in contrast to the relatively ubiquitous expression of NDRG1, NDRG2 is highly expressed in adult skeletal muscle and brain, NDRG3 highly expressed in brain and testis, and NDRG4 specifically expressed in brain and heart, suggesting that they might display different specific functions in distinct tissues.  相似文献   

18.
The N-myc downstream-regulated gene (NDRG) family consists of four related proteins, NDRG1-NDRG4, in mammals. We previously generated NDRG1-deficient mice that were unable to maintain myelin sheaths in peripheral nerves. This condition was consistent with human hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D, caused by a nonsense mutation of NDRG1. In contrast, the effects of genetic defects of the other NDRG members remain unknown. In this study, we focused on NDRG4, which is specifically expressed in the brain and heart. In situ mRNA hybridization on the brain revealed that NDRG4 was expressed in neurons of various areas. We generated NDRG4-deficient mice that were born normally with the expected Mendelian frequency. Immunochemical analysis demonstrated that the cortex of the NDRG4-deficient mice contained decreased levels of brain-derived neurotrophic factor (BDNF) and normal levels of glial cell line-derived neurotrophic factor, NGF, neurotrophin-3, and TGF-β1. Consistent with BDNF reduction, NDRG4-deficient mice had impaired spatial learning and memory but normal motor function in the Morris water maze test. When temporary focal ischemia of the brain was induced, the sizes of the infarct lesions were larger, and the neurological deficits were more severe in NDRG4-deficient mice compared with the control mice. These findings indicate that NDRG4 contributes to the maintenance of intracerebral BDNF levels within the normal range, which is necessary for the preservation of spatial learning and the resistance to neuronal cell death caused by ischemic stress.  相似文献   

19.
NDRG4 is a largely unstudied member of the predominantly tumor suppressive N-Myc downstream-regulated gene (NDRG) family. Unlike its family members NDRG1–3, which are ubiquitously expressed, NDRG4 is expressed almost exclusively in the heart and brain. Given this tissue-specific expression pattern and the established tumor suppressive roles of the NDRG family in regulating cellular proliferation, we investigated the cellular and biochemical functions of NDRG4 in the context of astrocytes and glioblastoma multiforme (GBM) cells. We show that, in contrast to NDRG2, NDRG4 expression is elevated in GBM and NDRG4 is required for the viability of primary astrocytes, established GBM cell lines, and both CD133+ (cancer stem cell (CSC)-enriched) and CD133 primary GBM xenograft cells. While NDRG4 overexpression has no effect on cell viability, NDRG4 knockdown causes G1 cell cycle arrest followed by apoptosis. The initial G1 arrest is associated with a decrease in cyclin D1 expression and an increase in p27Kip1 expression, and the subsequent apoptosis is associated with a decrease in the expression of XIAP and survivin. As a result of these effects on cell cycle progression and survival, NDRG4 knockdown decreases the tumorigenic capacity of established GBM cell lines and GBM CSC-enriched cells that have been implanted intracranially into immunocompromised mice. Collectively, these data indicate that NDRG4 is required for cell cycle progression and survival, thereby diverging in function from its tumor suppressive family member NDRG2 in astrocytes and GBM cells.The N-Myc downstream-regulated gene (NDRG)5 family consists of four genes (NDRG1–4) that can be divided into two subfamilies based on sequence homology: NDRG1 and NDRG3 are in the first subfamily, and NDRG2 and NDRG4 make up the second subfamily. Although the four NDRG family members show distinct spatiotemporal expression patterns during embryonic development and in adult tissues (110), all four are highly expressed in the brain (4). To date, however, NDRG2 is the only NDRG family member that has been studied in the context of GBM cells and astrocytes. NDRG2 mRNA and protein levels are lower in GBM than in normal brain tissue, normal glial cells, and low grade astrocytomas (1114), suggesting a tumor suppressive function. Data from experimental and clinical studies support this hypothesis: NDRG2 overexpression inhibits GBM cell proliferation (15), and decreased NDRG2 expression correlates with decreased GBM patient survival (13).In contrast to its subfamily member NDRG2, NDRG4 has not been studied in GBM cells or astrocytes. Nevertheless, available evidence supports the hypothesis that NDRG4 has an important role in this context that is similar to the role of NDRG2. First, unlike the relatively ubiquitous expression patterns of NDRG1–3, NDRG4 expression is restricted to a small number of tissues including the brain, where it is expressed at particularly high levels (7, 10). This restricted expression pattern suggests that NDRG4 plays an important role within the central nervous system. Second, NDRG4 is more than 60% identical in amino acid sequence to NDRG2. This sequence similarity is likely behind the overlapping functions of these two proteins in certain cell types within the brain. For example, in PC12 neuronal cells, both NDRG4 and NDRG2 promote neurite extension (1618). In combination with the brain-specific expression pattern of NDRG4, these functional and sequence similarities suggest that NDRG4 may recapitulate the tumor suppressive function of NDRG2 in primary brain neoplasms.To determine if the similarities between NDRG2 and NDRG4 extend to the context of GBM, we investigated the role of NDRG4 in GBM cell lines and primary human astrocytes. In contrast to the established roles of NDRG2 and other NDRG family members, we found that the role of NDRG4 in GBM is not tumor suppressive. On the contrary, both astrocytes and GBM cells require the presence of NDRG4 for cell cycle progression and survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号