首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
沙地樟子松人工林自然稀疏规律   总被引:24,自引:1,他引:23  
林分在自然稀疏过程中,与密度相关的死亡是由林木大小的增加引起的。因此,很自然地要选择反映林木大小的指标,来表示林木株数与林木大小的关系。选取林分总断面积作为林大小的指标,建立了沙地樟子松人工林自然稀疏过程中林分密度与断面积的相关关系,旨在为沙地樟子松人工林的合理经营提供依据。对自然稀疏-3/2法则进行的评述,认为尽管没有充分证据表明斜率-3/2存在的精确性,但它可以作为一个理想的常数,并且考虑到各  相似文献   

2.
运用非线性联立方程组建模理论建立红松立木相容性生物量模型,然后利用模型计算出人工红松各个样地林木各器官和样地总生物量。以林分年龄、林分平均胸径、林分密度等因素为制约条件,讨论分析林分生物量在林木各器官之间的分配规律,并且探究林分年龄、林木大小和林分密度的变化对林分生物量的影响。结果表明:幼龄红松人工林林分生物量与平均胸径成正相关关系;林分密度对林分生物量影响较大,并且随着密度的增大而增大,且最适合的林分密度范围是1 000~1 400株·ha-1;红松人工幼、中龄林林分生物量各器官分配规律相同,表现为树干树根树枝树叶,地上生物量占林分生物量79%左右;林分地上和地下生物量大概呈3.8∶1的比例。  相似文献   

3.
北京松山自然保护区蒙古栎林的空间结构特征   总被引:13,自引:1,他引:12  
以松山自然保护区面积为0.6 hm2样地的调查数据为基础,利用角尺度、大小比数和混交度3个林分空间结构参数,分析了蒙古栎天然林的空间结构特征.结果表明:蒙古栎林乔木层共有10个种群,蒙古栎种群密度和断面积占有明显优势,是乔木层的优势种和建群种;蒙古栎林平均混交度为0.299,林分混交程度低,优势种以零度混交和弱度混交为主,伴生种的混交状况普遍较好;蒙古栎和油松种群在空间结构单元中以优势木、亚优势木和中庸木为主,分别占种群总株数的68%和58%,其他种群的树种优势度不明显,多为被压木;该林分的空间分布格局为聚集分布,但林木聚集程度和聚集规模较低.  相似文献   

4.
林木大小多样性直接反映森林生态系统的健康与稳定, 客观恰当地表达大小多样性对于评价天然林或人工林的经济、生态、社会价值及其经营效果至关重要。本研究选用7个林木大小多样性指数, 其中4个与距离无关(Simpson大小多样性指数DN、Shannon大小多样性指数HN、断面积Gini系数GC和直径变异系数CVd), 3个与距离有关(Simpson大小分化度指数DT、Shannon大小分化度指数HT和大小分化度均值指数$\bar{T}$), 通过6组模拟林分和4块实测林分比较分析了它们的表达能力。结果表明: 不考虑极端情况(极端情况为对比林分林木大小混交不同但林木直径构成完全相同), GCCVd、$\bar{T}$、DTHT能客观恰当地表达不同径级分布林分的林木大小多样性差异, 其中CVd区分能力最强, GC次之。若考虑极端情况, 只有$\bar{T}$、DTHT能区分出不同大小混交程度林分的林木大小多样性差异。本研究认为CVdGC因计算简单, 易于实际应用, 在营林活动中可作为分析林木大小多样性的首选指数; $\bar{T}$因能识别不同大小混交程度林分的空间差异, 即对林分更新变化敏感, 适用于动态分析林分的结构特征。  相似文献   

5.
侯梅  胡剑民  张琴琴  汪洋 《生态科学》2022,41(1):179-185
为研究黄山松天然次生林直径分布特征,以麻城市黄山松天然次生林为研究对象,采用标准样地调查,计算林分直径的偏度、峰度,林分直径分布的Shannon-Weiner和Simpson指数,运用负指数分布、normal分布、lognormal分布、logistic分布和Weibull分布等5种概率密度函数对黄山松天然次生林林分直...  相似文献   

6.
黄土高原柴松群落空间结构   总被引:2,自引:0,他引:2  
利用角尺度、大小比数和混交度3个林分空间结构参数,分析了黄土高原柴松(Pinus tabulaeformisf.shekannesis)群落的空间结构特征。结果表明:1)该林分的树种组成为柴松:辽东栎(Quercus liaotungensis)∶其他树种=7∶2∶1,林分密度为3064株.hm-2,柴松种群优势度明显。2)柴松林林分平均混交度为0.33,处于弱度混交到中度混交过渡时期,种间隔离程度较小。3)柴松林林分平均角尺度为0.57,整个林分呈团状分布。4)林分平均胸径大小比为0.52,平均树高大小比为0.53,林木大小比数的分布较为均匀。胸径大小比和树高大小比在反映林木生长优势方面具有一致性。  相似文献   

7.
矩阵模型在森林择伐经营中的应用   总被引:5,自引:1,他引:4  
采用矩阵模型预测未干扰下长白山阔叶红松林不同初期密度和直径分布林分300年的动态生长过程,比较12种不同采伐方案(最小采伐直径分别为70、60、50、40cm,采伐周期分别为10、20、30年)经过300年采伐保留林分的密度、断面积和林分收获量。结果表明,无论初始状态如何,未干扰林分经过约200多年后变化趋于平稳,径阶结构、断面积均能达到近似相等的稳定状态;采伐以最小采伐直径60cm、采伐周期20年较适宜。得出了不同采伐方案的收获量及保留林分各因子变化规律。  相似文献   

8.
天然林不同强度择伐后林分空间结构变化动态   总被引:9,自引:0,他引:9  
基于长期跟踪复测数据,利用混交度、大小比数和角尺度3个结构参数,研究了4种不同强度择伐(弱度13.O%、中度29.1%、强度45.8%、极强度67.1%)后天然林林分空间结构的变化动态.结果表明:弱度和中度择伐后林分平均混交度和大小比数呈增长趋势,强度和极强度择伐则呈下降趋势;择伐并未改变林木的空间分布格局,各样地林分均为聚集分布,中度择伐处于随机分布状态的林木数大幅增加.总的来说,弱度和中度择伐后林分空间结构正趋向优化.  相似文献   

9.
天然林的林分结构复杂、物种多样性丰富,为分析林分生长与制定合理的森林经营决策方案带来了巨大的挑战。树高-胸径关系对于预测林分生长、制定森林管理经营措施具有重要意义。本文基于48块帽儿山阔叶混交林样地的调查数据,根据树种结构、生长特征及生态学特性将23个树种分为4个树种组,通过再参数化方法建立包含林分、林木竞争、树种混交情况及物种多样性变量的广义模型,并建立样地、树种组两水平混合效应模型,利用留一交叉验证法检验模型的预测能力。结果表明:Ratkowsky(1990)模型为最优基础模型,引入优势木平均高、大于对象木断面积之和、树种占比和Shannon指数能更好地解释帽儿山阔叶混交林树高-胸径关系;引入样地、树种组混合效应模型可显著提高模型的预测精度,Ra2为0.83。此外,在相同梯度的环境因素下,喜光树种比耐荫树种表现出更高的树高。本研究利用所构建的树高-胸径模型分析了树种混交及树木功能性状对树高生长的影响,为精准预测阔叶混交林不同树种的树高以及进一步分析阔叶混交林分生长关系提供理论基础。  相似文献   

10.
西南亚热带典型天然常绿阔叶林的空间结构特征   总被引:2,自引:0,他引:2  
以西南亚热带分布较广泛的两种典型的天然常绿阔叶林——四川大头茶林和栲树林为研究对象,根据树种组成,采用混交度、大小比数和角尺度3个空间结构参数,对比分析2种林分的空间结构特征。结果显示:(1)四川大头茶林和栲树林群落的乔木层分别有8和9个树种,2种林分内的优势种的密度及每公顷断面积优势明显。(2)2种林分的树种混交程度较高,林分平均混交度分别为0.61和0.73,混交程度均在中等以上;栲树林群落的树种隔离程度优于四川大头茶林;林分内的平均大小比数分别为0.47和0.45,多数林木处于中庸状态,林分内不同径级的林木在各组成的空间结构单元内分布比较均匀。(3)四川大头茶林的平均角尺度为0.523,属于聚集分布;栲树林的平均角尺度为0.517,属于随机分布,且呈现轻微的聚集分布。研究表明,两种林分的混交度差异显著,而大小比数和角尺度差异不显著,栲树林较四川大头茶林的群落结构稳定。  相似文献   

11.
Growth modelling is an essential prerequisite for evaluating the consequences of a particular management action on the future development of a forest ecosystem. Mathematical growth models are not available for many tree species in India. The objectives of this study were to estimate potential stand density and model the actual tree density and basal area development in pure even-aged stands of Eucalyptus camaldulensis. Relationships between quadratic mean diameter and stems ha(-1) were developed, and parameter values of this relationship were used to establish the limiting density line. Two different models were compared to describe the natural decrease of stem number. The model including site index as one of the variables performed slightly better than the model without site index. Seven different stand level models also were compared for predicting basal area in the stands. The models tested in this paper belong to the path invariant algebraic difference form of a nonlinear model. They can be used to predict future basal area as a function of stand variables like initial basal area, age or dominant height, and stems ha(-1) and are crucial for evaluating different silvicultural treatment options. The performance of the models for basal area was evaluated using different quantitative criteria. Among the seven models tested, the two models proposed by Pienaar and Shiver and Forss et al. had the best performance. The equations proposed to predict future basal area and stem number are related and, therefore, simultaneous regression technique has also been used to investigate the differences between parameter coefficients obtained by fitting the equations separately and jointly.  相似文献   

12.
Abstract. The long-term growth dynamics of natural forest stands on the island of Hokkaido were described on the basis of an analysis of data from 38 permanent plots spanning 15–22 yr. Stand structure was characterized by basal area, stem density and tree size variability. To detect trends in stand structure, regression models for recruitment rate (per ha per yr), mortality rate and the rate of change in stem density and tree size variability were developed by a stepwise method using initial basal area, stem density, tree size variability, species composition summarized by LNMDS ordination, altitude, annual mean temperature, annual precipitation, type of understorey vegetation, topography and slope aspect as candidates for predictor variables. The same analyses were conducted for basal area increment (net growth) and its components: survivor growth = basal area gain by growth of surviving individuals and mortality = basal area loss by death of individuals. Stem density remained generally unchanged; recruitment was relatively low even in very sparse stands. Stand basal area generally increased as survivor growth was approximately double the mortality. Recruitment rate was strongly affected by the presence of dwarf bamboo (Sasa spp.) vegetation on the forest floor which inhibited tree regeneration. Mortality rate was density-dependent; dense stands had higher mortality than sparse stands. Density change rate (recruitment rate - mortality rate) was, therefore, determined by both the type of understorey vegetation and stem density. Survivor growth was high in stands with high stem density and basal area. Mortality was dependent on basal area and altitude. Net basal area increment (net growth) was dependent only on stem density with other factors that influenced survivor growth and mortality omitted. Tree size variability decreased in stands with high tree size variability whereas it increased in stands with low size variability. Based on the obtained models for density change rate and net basal area increment, trajectories of stands were illustrated on a log-log diagram of stem density and basal area. The predicted differences in trajectories as affected by the understorey vegetation type indicated the importance of dwarf bamboo vegetation for forest dynamics on Hokkaido.  相似文献   

13.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

14.
In the present study, we investigated the effect of hillslope gradient on vegetation recovery on abandoned land of shifting cultivation In Hainan Island, south China, by measuring community composition and structure of 25-year-old secondary forest fallows along a hillslope gradient (up-, middle-, and down-slope position). A total of 49 733 free-standing woody plant stems higher than 10 cm and belonging to 170 species, 112 genera, and 57 families was found in the three l-hm2 investigation plots. Stem density was highest in the down-slope stand and lowest in the up-slope stand. Species richness and the Shannon-Wiener Index were both highest in the middle-slope stand, and lower In the down-slope and up-slope stands. The recovery forest fallows on different hiUslope positions were all dominated by a few species. The five most abundant species accounted for 70.1%, 58.8%, and 72.9% of total stem densities in stands in the up-, middle-, and down-slope positions, respectively. The five species with the greatest basal areas accounted for 74.5%, 84.3%, and 74.7% of total stem basal area for the up-, middle-, and down-slope positions, respectively. The number of low-density species (stem abundance less than five) Increased from the up-slope position downward. Of the nine local common species among three different functional groups, the short-lived pioneer species dominated the up-slope position, but long-lived pioneer species dominated the middle- and down-slope positions. The climax species of primary tropical lowland rain forest was found in the downslope position. Both the mean diameter at breast height (DBH) and mean height of the trees Increased with decreasing hillslope gradient. The stem density and basal area in different size classes were significantly different in stands In different slope positions. Our results indicated that the rate of secondary succession varies, even over small spatial scales caused by the hlllslope gradient, in early vegetation recovery.  相似文献   

15.
The age dynamics of the main taxation characteristics (height, diameter, stand basal area, average and current increment of stock, and total stand productivity) have been analyzed in stands of different types. The influence of admixed species on the formation of the stands is assessed. The expediency of planting pure stands on heavy textured soils of floodplains in the forest steppe has been proven.  相似文献   

16.
Changes in forest structure and species diversity throughout secondary succession were studied using a chronosequence at two sites in the Bolivian Amazon. Secondary forests ranging in age from 2 to 40 years as well as mature forests were included, making a total of 14 stands. Fifty plants per forest layer (understory, subcanopy, and canopy) were sampled using the transect of variable area technique. Mean and maximum height, total stem density, basal area, and species number were calculated at the stand level. Species diversity was calculated for each stand and for each combination of forest layer and stand. A correspondence analysis was performed, and the relationship between relative abundance of the species and stand age was modeled using a set of hierarchical models. Canopy height and basal area increased with stand age, indicating that secondary forests rapidly attain a forest structure similar in many respects to mature forests. A total of 250 species were recorded of which ca 50 percent made up 87 percent of the sampled individuals. Species diversity increased with stand age and varied among the forest layers, with the lowest diversity in the canopy. The results of the correspondence analysis indicated that species composition varies with stand age, forest layer, and site. The species composition of mature forests recovered at different rates in the different forest layers, being the slowest in the canopy layer. Species showed different patterns of abundance in relation to stand age, supporting the current model of succession.  相似文献   

17.
半干旱黄土丘陵区人工林叶面积特征   总被引:6,自引:0,他引:6       下载免费PDF全文
 该文通过对黄土丘陵区4个密度的刺槐(Robinia pseudoacacia)人工林、3个密度的侧柏(Platycladus orientalis)人工林生长季叶面积变化的研究,揭示了不同密度林分叶面积生长与林分密度的关系;通过对灌木生长季叶面积变化的研究,建立了灌木柠条(Caragana korshinskii)、沙棘(Hippophae rhamnoides)和紫穗槐(Amorpha fruticosa)叶面积与叶鲜重、枝条基径的经验公式,为半干旱区灌木生长调查提供了一种方便、快捷的方法。结果表明:1)刺槐和侧柏各密度林分的单株林木叶面积和叶面积指数均在9月达到最大值,其中刺槐林叶面积指数峰值可达到10.5,侧柏峰值可达到3.2;灌木柠条、沙棘和紫穗槐叶面积和叶面积指数都在8月份达到各自的最大值,柠条、沙棘和紫穗槐的叶面积指数峰值分别为1.1 95、1.123和1.882;2)刺槐叶面积与叶鲜重具有极显著相关的幂函数关系,侧柏、柠条、沙棘、紫穗槐叶面积与叶鲜重具有极显著相关的线性函数关系,其中柠条枝条基径与叶面积还具有极显著相关的幂函数关系,沙棘、紫穗槐枝条基径与叶面积还具有极显著相关的线性函数关系;3)黄土丘陵区,由于林地土壤水分条件的限制,承载力有限。人工林进入生长盛期后, 不同密度刺槐和侧柏林分叶面积指数趋于一致,与最初的造林密度和现存密度没有关系。在不同密度的刺槐和侧柏林分间,单株叶面积与其林分密度成反比。在对上述结果分析的基础上得出:黄土丘陵区,由于林地土壤水分条件的限制,承载力有限。该文所研究的刺槐和侧柏各林分均已达到了当地土地承载力的上限,基于提高单株林木质量的考虑,建议刺槐林郁闭后的密度不超过833株&;#8226;hm-2,侧柏则不超过1 111株&;#8226;hm-2。如以全林分生物量为目标,林分密度也可适当减小。  相似文献   

18.
River regulation and water extraction have altered the hydrology of rivers resulting in substantial changes to forest structure and the dieback of floodplain forests globally. Forest mortality, due to water extraction, is likely to be exacerbated by climate change-induced droughts. In 1965, a plantation trial was established within a natural floodplain forest to examine the effect of planting density on timber production. We used data from this trial to investigate the effect of initial stand density on the structure and dynamics of Eucalyptus camaldulensis (Dehnh.) forests. Highest density stands (8000 trees ha−1) were dominated by many slender trees, mostly<10 cm in diameter, whereas the lowest density stands produced size distributions with a wider range of stem diameters and higher mean and maximum stem diameter. After 1996, the study area experienced a sharp decline in water availability due to a substantial lowering of the water table, reduced flooding frequency, a pronounced rainfall deficit and increased maximum temperatures. The drought coincided with a dramatic increase in mortality in the high-density stands, yet remained little changed in low-density treatments. Our results highlight the importance of initial stand density as a key determinant of the development of forest structure. Early thinning of high-density stands is one component of a broader management approach to mitigate impacts of human-induced drought and water extraction on developing floodplain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号