首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 316 毫秒
1.
三氟氯氰菊酯对棉铃虫神经细胞钠及钙通道作用机理研究   总被引:13,自引:0,他引:13  
用膜片钳技术对比分析了棉铃虫三氟氯氰菊脂抗性品系(R)及其同源对照品系(S)幼虫了体培养中枢神经细胞Na^2 通道的门控特性及杀虫剂对R和S神经细胞Na^ 、Ca^ 通道门控过程的影响。结果表明,S神经细胞Na^ 通道电流(S-INa)在-50-40mV激活,-20mV左右达峰值,R神经细胞Na^2 通道电流(R-INa)在-40mV左右激活,-10-0mV达峰值,即R-INa激活电压与峰值电压均向正电位方向移动约10mV,提示二者Na^ 通道控特性不同,R神经细胞Na^ 通道功能发生了变异。三氟氯氰菊酯作用后,S-INgn R-ISs的I-V曲线均向负电位方向移动的10mV,S-INa在20min后基本消失,而R-INa被阻断需时约90min,延长近5倍,其幅值有减小再增大的现象。对Ca^2 通道分析表明,杀虫剂作用后,R及S神经细胞Ca^2 通道电流的I-V曲线均向负电位移动10-20mV,提示三氟氯氰菊酯对Ca^2 通道的门控过程也有影响。与R-INa幅值起伏变化相联系,可推知杀虫剂对神经细胞的毒性作用中,Na^2 、Ca^2 通道均受影响。  相似文献   

2.
弱激光对大鼠海马神经元钠通道特性的影响   总被引:6,自引:0,他引:6  
利用波长670nm、功率5mW的半导体激光器照射急性分离的大鼠海马CA3区锥体神经元,应用全细胞膜片钳技术研究其电压门控Na 通道的特性.实验发现:弱激光作用5min时,Na 通道激活电位和峰值电位开始向负电位方向移动,7min激光作用达稳定;激光照射对Na 通道电流峰值无影响,对照组和激光照射组峰值电流密度分别为(-383.51±26.93)pA/pF和(-368.36±33.14)pA/pF(n=8,P>0.05);激光作用降低了Na 通道的激活阈值电位和峰值电位,对照组通道电流在-40mV激活,-30mV达峰值,激光照射组通道电流在-60mV激活,-40mV达峰值;激光照射改变了Na 通道半数激活电压和斜率因子,对照组和激光照射组的半数激活电压分别为(-42.091±1.537)mV和(-54.971±1.846)mV(n=8,P<0.01),斜率因子分别为(1.529±0.667)mV和(2.634±0.519)mV(n=8,P<0.05).结果表明,弱激光照射海马神经元可改变Na 通道的激活特性,从而影响动作电位的去激化过程,进而会引起神经元细胞生理功能发生变化.  相似文献   

3.
苦皮藤素IV麻醉机理的膜片钳研究   总被引:1,自引:0,他引:1  
用膜片钳技术研究了植物杀虫剂苦皮藤素Ⅳ对棉铃虫幼虫离体培养中枢神经细胞钠通道门控过程的影响。结果表明,苦皮藤素Ⅳ对钠通道具有迅速的浓度依赖性阻滞作用,使电流-电压关系(I-V)曲线上移。0.1、1和10μmol/L苦皮藤素Ⅳ作用3min后,分别使钠电流峰值(INaMax)较给药前下降27.35%±4.05%、62.72%±2.81%和88.53%±5.56%(P<0.05),1和10μmol/L苦皮藤素Ⅳ还使钠通道的激活电压和峰电压分别向正电位方向移动了10mV和20mV左右。同时比较研究了利多卡因对棉铃虫幼虫神经细胞钠通道的影响,利多卡因对钠通道也具有阻滞作用,但有效作用浓度明显高于苦皮藤素Ⅳ。1、70mmol/L的利多卡因注射液作用3min后,使INaMax较用药前下降21.21%±2.52%和95.63%±2.10%(P<0.05)。苦皮藤素Ⅳ对钠通道门控过程的影响与利多卡因等局部麻醉剂非常相似,因此,对钠通道的阻滞作用可能是其发挥麻醉作用的重要机制。  相似文献   

4.
运用全细胞膜片钳技术研究慢性铅暴露和急性给二氧化硫衍生物对大鼠海马神经元钠电流的影响,结果发现,慢性铅暴露组钠电流在-70mV激活,-30mV达到峰值;对照组钠电流在-70mV激活,-40mV达到峰值.两组峰值不具有显著性差异.急性给二氧化硫衍生物于慢性铅暴露组,钠电流在-80mV开始激活,-40mV达到峰值,I-V曲线显著下移.慢性铅暴露使穿越钠通道离子的绝对数量稍微有些减少,但不具有统计学差异;二氧化硫可使慢性铅暴露的海马神经元的INa显著增大.慢性铅暴露推迟了INa达到峰值的时间,但不影响失活时间常数;急性加入二氧化硫衍生物不改变慢性铅暴露达到峰值的时间,却使失活时间常数显著延长.慢性铅暴露使INa的激活曲线右移,失活曲线左移;二氧化硫衍生物使慢性铅暴露的海马神经元上的INa的激活和失活曲线都往超极化方向移动.这些结果表明,铅和二氧化硫改变了细胞膜钠通道对于电压的感应,延长了钠通道的开放时程,这些可能是这两种大气污染物联合损伤海马神经元的作用机制之一.  相似文献   

5.
苦皮藤素Ⅳ麻醉机理的膜片钳研究   总被引:7,自引:0,他引:7  
用膜片钳技术研究了植物杀虫剂苦皮藤素Ⅳ对棉铃虫幼虫离体培养中枢神经细胞钠通道门控过程的影响.结果表明,苦皮藤素Ⅳ对钠通道具有迅速的浓度依赖性阻滞作用,使电流-电压关系(I-V)曲线上移.0.1、1和10 μmol/L苦皮藤素Ⅳ作用3 min后,分别使钠电流峰值(INaMax)较给药前下降2735%±4.05%、62.72%±2.81%和88.53%±5.56%(P<0.05),1和10μmol/L苦皮藤素Ⅳ还使钠通道的激活电压和峰电压分别向正电位方向移动了10 mV和20 mV左右.同时比较研究了利多卡因对棉铃虫幼虫神经细胞钠通道的影响,利多卡因对钠通道也具有阻滞作用,但有效作用浓度明显高于苦皮藤素Ⅳ.1、70 mmol/L的利多卡因注射液作用3 min后,使INaMax较用药前下降21.21%±2.52%和95.63%±2.10%(P<0.05).苦皮藤素Ⅳ对钠通道门控过程的影响与利多卡因等局部麻醉剂非常相似,因此,对钠通道的阻滞作用可能是其发挥麻醉作用的重要机制.  相似文献   

6.
河蟹眼柄神经分泌细胞离子通道的膜片钳研究   总被引:6,自引:0,他引:6  
采用全细胞膜片钳技术对培养12-24小时不同形态河蟹眼柄视节端髓X器官(MTXO)神经分泌细胞离子通道进行了研究。结果表明,河蟹眼柄MTXO中分布的A、B、C三种类型神经分泌细胞均可记录到由向电流和外向电流组成的正常全细胞电流。内向电流由高电压激活钙离子通道电流(Lca)和对TTX敏感钠离子通道电流(INa)组成。ICa的激活电压为-30mV,在0- 20mV电压下达到峰值,在-40mV和-70mV保持电压下记录的ICa激活阈值、初始峰值及I-V曲线无明显差别。外向电流明显,幅值较大,包括对4-AP敏感的快速激活、快速失活钾离子通道电流(IA)和对TEA敏感的缓慢激活、缓慢失活钾离子通道电流(IK)。正常蟹种、二龄成蟹和早熟蟹种MTXO神经分泌细胞均表达电压门控钠、钾、钙离子通道,通道电流和电压特征无明显区别.  相似文献   

7.
【目的】戊吡虫胍是将新烟碱类和缩氨脲类杀虫剂杀虫活性部分重新组合的新型杀虫剂。但对于该类杀虫剂究竟如何影响离子通道,通道门控特性和功能是如何变化目前尚未见报道。本实验旨在明确该杀虫剂是否影响电压门控钙通道和钾通道的门控过程,探究其是否为该杀虫剂的潜在作用靶标。【方法】应用全细胞膜片钳技术检测戊吡虫胍对棉铃虫Helicoverpa armigera Hübner中枢神经细胞电压门控Ca~(2+)通道和K~+通道的影响。【结果】戊吡虫胍作用后Ⅰ-Ⅴ曲线和激活曲线均向超极化方向移动10-15 mV,具有显著性统计学差异(P0.05)。稳态失活曲线向超极化方向移动约5 mV,不具有统计学差异(P0.05)。电压门控Ca~(2+)通道峰值电流(I_(peak))有不同程度的降低。随着浓度增大I_(peak)降低有减小的趋势。此外,1μmol·L~(-1)戊吡虫胍作用后钙离子的窗口电流(I_w)面积增加幅度较10μmol·L~(-1)和100μmol·L~(-1)大,为93.20%。提示在一定的测试电压下,该药物作用后处于激活状态的Ca~(2+)通道数目增多。另外,其作用后电压门控钾通道I_(peak)降低。随着浓度增大I_(peak)降低有减小的趋势。同时Ⅰ-Ⅴ曲线下移,激活曲线向去极化方向移动约8 mV,不具有统计学差异(P0.05)。这表明戊吡虫胍作用后K~+通道在较高电位下才能激活。【结论】戊吡虫胍能够有效抑制Ca~(2+)通道和K~+通道I_(peak),并使通道的激活曲线和失活曲线发生移动,影响Ca~(2+)通道和K~+通道的门控特性。表明棉铃虫中枢神经细胞上的电压门控Ca~(2+)通道和K~+通道是戊吡虫胍的潜在作用靶标之一。  相似文献   

8.
光学活性拟除虫菊酯对棉铃虫神经细胞钠通道电流的影响   总被引:5,自引:2,他引:3  
用全细胞膜片钳技术对比分析了alpha体氯氰菊酯与theta体氯氰菊酯对棉铃虫Helicoverpa armigera幼虫离体培养中枢神经细胞Na+通道门控过程的影响。结果表明,alpha体氯氰菊酯作用后,神经细胞Na+通道电流(INa)先增大,同时通道的激活电压向负电位方向移动约10 mV,提示alpha体氯氰菊酯使通道激活电位降低,通道更容易被激活。药剂作用约10 min后,INa又迅速降低,表明alpha体氯氰菊酯对开放状态的Na+通道有抑制作用。另外,alpha体氯氰菊酯使INa到达峰值的时间缩短,但对失活时间无明显影响。Theta体氯氰菊酯也使INa激活电位左移,幅值降低,但降低速率较慢。总的结果表明alpha体氯氰菊酯与theta体氯氰菊酯对棉铃虫中枢神经细胞处于关闭和开放状态的钠通道均有作用,且alpha体氯氰菊酯对钠通道电流的抑制作用强于theta体氯氰菊酯。  相似文献   

9.
用膜片钳技术首次研究了三氟氯氰菊酯对离体培养的棉铃虫中枢神经细胞延迟整流钾通道电流的影响。结果表明,药物作用前有81%和39%的细胞的通道分别在-30 mV 和 -40 mV 激活(n=21)。三氟氯氰菊酯(10-5 mmol/L)作用15 min后,有63%和38%细胞的通道分别在-40 mV 和 -50 mV 激活(n=8);作用1 min后电流幅值明显降低,抑制率达到了37.7%(n=19);加药后激活曲线明显左移且Vh 值变化显著,但k值没有明显变化。实验结果说明,三氟氯氰菊酯作用后,通道更容易激活,但显著抑制电流峰值,导致神经敏感性降低,棉铃虫中枢神经细胞钾通道也是拟除虫菊酯类药物的作用靶标之一。  相似文献   

10.
采用全细胞膜片钳技术观察不同浓度葡萄糖对新生Wister大鼠胰岛β细胞膜上电压依赖性L-型钙离子通道门控特性的影响,即分别用2.8、5.5、16.7和22.2 mmol/L的葡萄糖刺激单个贴壁胰岛β细胞,以Ba2+作为载流子,分析比较葡萄糖对L-型钙通道电流的影响。结果显示:在低糖(2.8 mmol/L)情况下,大鼠胰岛β细胞电压依赖性L-型钙离子通道电流静息膜电位约为-70 mV,钙离子内流不明显,且无明显的时间依赖性关系。在葡萄糖浓度为5.5 mmol/L的条件下,大鼠胰岛β细胞电压依赖性L-型钙离子通道电流在-40 mV激活, +20 mV左右达峰值;高糖(16.7 mmol/L)作用胰岛β细胞后,电压依赖性L-型钙离子通道电流约-40 mV激活,+10 mV左右达峰值,即峰值电位向负方向移动约10 mV;葡萄糖浓度达22.2 mmol/L时,电活动呈持续性去极化,峰值电位增加不明显,提示葡萄糖降低胰岛β细胞电压依赖性L-型钙通道电流的激活电位阈值,促进其开放,钙电流峰值电位增加,随着高糖作用时间的延长,胰岛β细胞容积变大,细胞膜破坏。提示高浓度葡萄糖在一定范围内可以刺激胰岛素的分泌,但浓度过高则可抑制胰岛素的分泌,通过观察葡萄糖刺激的胰岛β细胞胰岛素第一时相分泌的变化,在一定程度上对高糖毒性作用的可能提供了证据。  相似文献   

11.
Astrocytes (both type 1 and type 2), cultured from the central nervous system of newborn or 7 day old rats show voltage gated sodium and potassium channels that are activated when the membrane is depolarized to greater than -40 mV. The sodium channels in these cells have an h-infinity curve similar to that of nodal membranes but the activation (peak current-voltage) curves are shifted along the voltage axis by about +30 mV. These sodium currents are blocked only by high concentrations of tetrodotoxin. The voltage activated potassium currents in both types of astrocyte show at least two components; an inactivating component that is suppressed at holding potentials of greater than -40 mV and a persistent, non-inactivating current. Several types of single channel currents were observed in outside-out membrane patches from type 2 astrocytes. One type of potassium channel showed inactivation on depolarization and may contribute to the whole-cell inactivating current. In contrast, oligodendrocytes showed no obvious voltage gated membrane channels. The properties of the type 2 astrocyte-oligodendrocyte progenitor cell were investigated in two ways: 1) by examination of cells just beginning to differentiate along the "electrically silent" oligodendrocyte pathway or 2) by recording from progenitor cells cultured for 24 hours in the presence of cycloheximide to block the appearance of new membrane channels. In both cases, voltage gated inward (sodium) and outward (potassium) currents were noted. The outward current response showed both an inactivating and a non-inactivating component. Similar voltage activated inward and outward membrane currents were noted in reactive astrocytes freshly isolated (3-6 hours) from lesioned areas of adult rat brains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have investigated the appearance of calcium current in Xenopus muscle cells in 1- to 6-day-old cultures. Whole cell currents were recorded using a patch-clamp amplifier with sodium and potassium replaced with tetraethylammonium and cesium, respectively, and BaCl2 used in place of CaCl2. When the muscle membrane was depolarized above -30 mV, a slow inward current was activated, the current reached a peak amplitude near 0 mV, and an outward current became apparent above +10 mV. This slow current was enhanced by adding barium or Bay K 8644 to the extracellular recording solution and was blocked by the addition of cobalt, cadmium, or the dihydropyridines nifedipine or (+)PN 200-110. Taken together these results indicate the presence of an inward calcium current mediated through L-type channels. Thirty-one percent of the cells examined on the first day in culture showed no discernible slow inward current; however, as the age of the culture increased, all cells showed slow inward current and there was an increase in the amplitude of the current. A small proportion of the muscle cells (5 out of 34) also showed a fast activating and inactivating inward current. This current, which activated at more hyperpolarized potentials (-40 mV) was only present when 5 mM ATP was included in the internal recording solution. It also appeared to be mediated through a calcium channel but not a dihydropyridine, sensitive channel.  相似文献   

13.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

14.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

15.
以Ba2+为载流子,采用全细胞膜片钳法,研究了在电极液中分别加入G蛋白稳定 激活剂GTPγS(GTP类似物)和抑制剂GDPβS(GDP类似物)对棉铃虫Helicoverpaarmigera 3龄幼虫神经细胞高电压敏感钙通道的调节作用。Ba2+电流记录时间为20 min。对照组 和实验组的Ba2+电流在记录的初期均出现电流的增加现象,随后电流衰减,即“rundown ”。对照组峰电流在第20 min时降为初始值的(72.09±12.80)%。电极内液中加入2 mmol/L GTPγS可缓解电流的衰减现象,在第20 min时,峰电流为初始值的(95.99±7.93)%,明显大 于对照组的峰电流(P<0.01),而且电流 电压(I-V)关系曲线向正电压方向移动。相反 ,电极内液加入2 mmol/L GDPβS则导致峰电流衰减更加严重,第20 min时,峰电流仅为初始水 平的(41.95±9.32)%,显著小于对照组(P<0.01),但未见电流 电压(I-V)关系曲 线的明显漂移。结果表明,棉铃虫神经细胞钙通道活动受G蛋白激活剂GTPγS和G蛋白抑制剂GDPβS的影响,提示G蛋白活动水平的改变调节钙通道的电流幅值和电压依赖性。  相似文献   

16.
We studied the mechanism of inhibition of P-type calcium channels in rat cerebellar Purkinje neurons by the peptide toxin omega-Aga-IVA. Saturating concentrations of omega-Aga-IVA (> 50 nM) inhibited inward current carried by 2-5 mM Ba almost completely. However, outward current at depolarizations of > +60 mV, carried by internal Cs, was inhibited much less, as was the tail current after such depolarizations. omega-Aga-IVA shifted the midpoint of the tail current activation curve by about +50 mV and made the curve less steep. The inactivation curve was also shifted in the depolarized direction and was made less steep. With omega-Aga-IVA, channels activated more slowly and deactivated more quickly than in control. Trains of repeated large depolarizations relieved the inhibition of current (as tested with moderate depolarizations), probably reflecting the unbinding of toxin. The relief of inhibition was faster with increasing depolarization, but did not require internal permeant ions. We conclude that omega-Aga-IVA alters voltage-dependent gating by stabilizing closed states of the channel and that omega-Aga-IVA dissociates much more rapidly from open channels than from closed.  相似文献   

17.
The modulation of voltage‐gated calcium channels by chlorantraniliprole in the central neurones isolated from third‐instar larvae of Spodoptera exigua is studied by the whole‐cell patch‐clamp technique. The current of calcium in the third‐instar larvae of S. exigua is identified as a high‐voltage activated Ca2+ current. During the 10‐min recording, the current–voltage relationship curves of whole‐cell calcium channels are shifted in a negative direction by 10 mV compared with the control group. The fact that the gravity rundown of calcium current in the treated group is more apparent than in the control group demonstrates that the open channels are constantly inactivated. In addition, chlorantraniliprole inhibits the recorded calcium currents in a concentration‐dependent manner, which is irreversible on washout.  相似文献   

18.
Isolated ventricular myocytes of 3 to 5 weeks old rats were studied under conditions of intracellular perfusion and voltage clamp. The existence of two inward sodium currents with different TTX-sensitivities and different properties was shown. The fast sodium current was more sensitive to TTX (Kd about 8 X 10(-8) mol/l). The block of the slow sodium current by TTX was less specific (Kd about 7 X 10(-6) mol/l). There was an about four fold difference in the inactivation time constants between these currents. The maximum on the I-V curve of the slow sodium current was shifted along the voltage axis by about 15 mV in the positive direction as compared with that of the fast sodium current. A slow current carried by calcium ions was observed in sodium-free solution. The kinetics and TTX-sensitivity of this current were similar to those of the slow sodium current. The amplitude of this current was 15 to 20 times lower as compared with the slow sodium current observed in Na-containing solution with 10(-6) mol/l TTX (a concentration which completely blocked the fast sodium current). It is suggested that the slow voltage-gated TTX-sensitive channels described are not highly selective and pass both sodium and calcium ions.  相似文献   

19.
The inward currents in single smooth muscle cells (SMC) isolated from epididymal part of rat vas deferens have been studied using whole-cell patch-clamp method. Depolarising steps from holding potential -90 mV evoked inward current with fast and slow components. The component with slow activation possessed voltage-dependent and pharmacological properties characteristic for Ca(2+) current carried through L-type calcium channels (I(Ca)). The fast component of inward current was activated at around -40 mV, reached its peak at 0 mV, and disappeared upon removal of Na ions from bath solution. This current was blocked in dose-dependent manner by tetrodotoxin (TTX) with an apparent dissociation constant of 6.7 nM. On the basis of voltage-dependent characteristics, TTX sensitivity of fast component of inward current and its disappearance in Na-free solution it is suggested that this current is TTX-sensitive depolarisation activated sodium current (I(Na)). Cell dialysis with a pipette solution containing no macroergic compounds resulted in significant inhibition of I(Ca) (depression of peak I(Ca) by about 81% was observed by 13 min of dialysis), while I(Na) remained unaffected during 50 min of dialysis. These data draw first evidence for the existence of TTX-sensitive Na(+) current in single SMC isolated from rat vas deferens. These Na(+) channels do not appear to be regulated by a phosphorylation process under resting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号