首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
短程硝化启动运行中功能菌群变化研究   总被引:3,自引:0,他引:3  
【目的】短程硝化-厌氧氨氧化是可实现的最短生物脱氮工艺,短程硝化是实现该工艺的重要环节和必要条件。【方法】采用序批式反应器(SBR)来实现短程硝化过程的启动和稳定运行,并对该过程中的相关功能菌群变化进行检测分析。【结果】通过控制低DO浓度(<1 mg/L)和逐步提高氨氮进水负荷,可抑制氨氧化细菌(NOB)菌群增殖并促进亚硝酸氧化菌(AOB)菌群规模显著扩大,实现短程硝化过程的启动和稳定运行。在氨氮进水负荷为0.055 kg/(m3.d)时,平均氨氮去除容积负荷和污泥负荷可达到0.043kg/(m3.d)和0.16 kg/(kg.d),平均亚硝酸盐积累率可达到83.4%。在短程硝化启动和稳定运行过程中,NOB菌群密度从2.0×105CFU/mL降至1.5×104CFU/mL,相对丰度从5.51%降至2.14%;AOB菌群密度从4.5×104CFU/mL增加至1.5×107CFU/mL,相对丰度从0.18%增加至7.25%。【结论】AOB菌群规模的扩大是实现短程硝化和氨氮去除能力提高的主要原因,同时较高的进水氨氮浓度和负荷也会造成亚硝化活性的抑制。  相似文献   

2.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

3.
Achieving sustainable partial nitrification to nitrite has been proven difficult in treating low strength nitrogenous wastewater. Real-time aeration duration control was used to achieve efficient partial nitrification to nitrite in a sequencing batch reactor (SBR) to treat low strength domestic wastewater. Above 90% nitrite accumulation ratio was maintained for long-term operation at normal condition, or even lower water temperature in winter. Partial nitrification established by controlling aeration duration showed good performance and robustness even though encountering long-term extended aeration and starvation period. Process control enhanced the successful accumulation of ammonia oxidizing bacteria (AOB) and washout of nitrite oxidizing bacteria (NOB). Scanning electron microscope observations indicated that the microbial morphology showed a shift towards small rod-shaped clusters. Fluorescence in situ hybridization (FISH) results demonstrated AOB were the dominant nitrifying bacteria, up to 8.3 ± 1.1% of the total bacteria; on the contrary, the density of NOB decreased to be negligible after 135 days operation since adopting process control.  相似文献   

4.
This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification–denitrification (PND), “DO elbow” point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.  相似文献   

5.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

6.
A sequencing batch reactor was employed to treat the acrylic fiber wastewater. The dissolved oxygen and mixed liquor suspended solids were 2–3 and 3,500–4,000 mg/L, respectively. The results showed ammonium oxidizing bacteria (AOB) had superior growth rate at high temperature than nitrite oxidizing bacteria (NOB). Partial nitrification could be obtained with the temperature of 28 °C. When the pH value was 8.5, the nitrite-N accumulation efficiency was 82 %. The combined inhibitions of high pH and free ammonium to NOB devoted to the nitrite-N buildup. Hydraulic retention time (HRT) was a key factor in partial nitrification control, and the optimal HRT was 20 h for nitrite-N buildup in acrylic fiber wastewater treatment. The ammonium oxidation was almost complete and the transformation from nitrite to nitrate could be avoided. AOB and NOB accounted for 2.9 and 4.7 %, respectively, corresponding to the pH of 7.0. When the pH was 8.5, they were 6.7 and 0.9 %, respectively. AOB dominated nitrifying bacteria, and NOB was actually washed out from the system.  相似文献   

7.
The objective of this study was to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor. During a 140-day long-term operation, influent pH value, dissolved oxygen (DO), and chemical oxygen demand/nitrogen (COD/N) ratio were selected as operating factors to evaluate the maintenance and recovery of nitrite accumulation. Results showed that high DO concentration (2–4 mg/L) could damage nitrite accumulation immediately. However, nitrite accumulation ratio (NAR) could be increased from 1.68?±?1.51 to 35.46?±?7.86 % when increasing the pH values from 7.5 to 8.3 due to the increased free ammonia concentration. Afterwards, stable partial nitrification and high NAR could be recovered when the reactor operated under low DO concentration (0.5–1.0 mg/L). However, it required a long time to recover the partial nitrification of the reactor when the influent COD/N ratios were altered. Fluorescence in situ hybridization analysis implied that ammonium oxidizing bacteria were completely recovered to the dominant nitrifying bacteria in the system. Meanwhile, sludge volumetric index of the reactor gradually decreased from 115.6 to 56.6 mL/g, while the mean diameter of sludge improved from74.57 to 428.8 μm by using the strategy of reducing settling time. The obtained results could provide useful information between the operational conditions and the performance of partial nitrification when treating nitrogen-rich industrial wastewater.  相似文献   

8.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

9.
We have developed a 3D dry lift-off process to localize multiple types of nitrifying bacteria in polyethylene glycol diacrylate (PEGDA) cubes for enhanced nitrification, a two-step biological process that converts ammonium to nitrite and then to nitrate. Ammonia-oxidizing bacteria (AOB) is responsible for converting ammonia into nitrite, and nitrite-oxidizing bacteria (NOB) is responsible for converting nitrite to nitrate. Successful nitrification is often challenging to accomplish, in part because AOB and NOB are slow growers and highly susceptible to many organic and inorganic chemicals in wastewater. Most importantly, the transportation of chemicals among scattered bacteria is extremely inefficient and can be problematic. For example, nitrite, produced from ammonia oxidation, is toxic to AOB and can lead to the failure of nitrification. To address these challenges, we closely localize AOB and NOB in PEGDA cubes as microenvironment modules to promote synergetic interactions. The AOB is first localized in the vicinity of the surface of the PEGDA cubes that enable AOB to efficiently uptake ammonia from a liquid medium and convert it into nitrite. The produced nitrite is then efficiently transported to the NOB localized at the center of the PEGDA particle and converted into non-toxic nitrate. Additionally, the nanoscale PEGDA fibrous structures offer a protective environment for these strains, defending them from sudden toxic chemical shocks and immobilize in cubes. This engineered microenvironment cube significantly enhances nitrification and improves the overall ammonia removal rate per single AOB cell. This approach—encapsulation of multiple strains at close range in cube in order to control their interactions—not only offers a new strategy for enhancing nitrification, but also can be adapted to improve the production of fermentation products and biofuel, because microbial processes require synergetic reactions among multiple species.  相似文献   

10.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

11.
To achieve stable partial nitrification, activated sludge from a wastewater treatment plant using free ammonia (FA) inhibition was immobilized in a polyvinyl alcohol carrier. After FA treatment at 16.44 mg L−1 for 1 day, due to the increased growth rate gap between ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), AOB enrichment and NOB inhibition were achieved within 12 days, with AOB and NOB accounting for 65.61 and 0.05%, respectively. Subsequently, with dissolved oxygen concentrations of 4−5 mg L−1, pH of 7.6–7.8 and temperature of 25 ± 1 °C, the immobilized carrier made of activated sludge achieved more than 90% and more than 86% of nitrite accumulation rate at the influent ammonia concentration of 90−110 mg L−1 and 35−50 mg L−1, respectively. After 50 days operation, the NOB content was 0.10%, indicating the immobilized carrier provided favorable conditions for maintaining the low NOB content. Furthermore, due to the low NOB content in the inoculum and the oxygen-limited environment formed by the increase in the AOB numbers in the carrier, immobilized carrier with different initial biomass (1, 2.5 and 5%) can achieve stable partial nitrification.  相似文献   

12.
Partial nitrification to nitrite (nitritation) can be achieved in a continuous process without sludge retention by wash out of nitrite oxidising bacteria (NOB) while retaining ammonia oxidising bacteria (AOB), at elevated temperatures (the SHARON process) and, as demonstrated in this paper, also at low dissolved oxygen (DO) concentrations. Enriched AOB was attained at a low DO concentration (0.4 mg l−1) and a dilution rate of 0.42 day−1 in a continuous process. A higher oxygen affinity of AOB compared to NOB seemed critical to achieving this. This was verified by determining the oxygen half saturation constant, K o, with similar oxygen mass transfer resistances for enriched AOB and NOB as 0.033 ± 0.003 mg l−1 and 0.43 ± 0.08 mg l−1, respectively. However, the extent of nitritation attained was found to be highly sensitive to process upsets.  相似文献   

13.
The coupled system of partial nitrification and anaerobic ammonium oxidation (Anammox) is efficient in nitrogen removal from wastewater. In this study, the effect of different oxygen concentrations on partial nitrification performance with a sequencing batch reactor (SBR) was investigated. Results indicate that, partial nitrification of landfill leachate could be successfully achieved under the 1.0–2.0 mg L−1 dissolved oxygen (DO) condition after 118 d long-term operation, and that the effluent is suitable for an Anammox reactor. Further decreasing or increasing the DO concentration, however, would lead to a decay of nitrification performance. Additionally, the MLSS concentration in the reactor increased with increasing DO concentration. Respirometric assays suggest that low DO conditions (<2 mg L−1) favor the ammonia-oxidizing bacteria (AOB) and significantly inhibit nitrite oxidizing bacteria (NOB) and aerobic heterotrophic bacteria (AHB); whereas high DO conditions (>3 mg L−1) allow AHB to dominate and significantly inhibit AOB. Therefore, the optimal condition for partial nitrification of landfill leachate is 1.0–2.0 mg L−1 DO concentration.  相似文献   

14.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

15.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

16.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

17.
Shortcut nitrogen removal, that is, removal via formation and reduction of nitrite rather than nitrate, has been observed in membrane-aerated biofilms (MABs), but the extent, the controlling factors, and the kinetics of nitrite formation in MABs are poorly understood. We used a special MAB reactor to systematically study the effects of the dissolved oxygen (DO) concentration at the membrane surface, which is the biofilm base, on nitrification rates, extent of shortcut nitrification, and microbial community structure. The focus was on anoxic bulk liquids, which is typical in MAB used for total nitrogen (TN) removal, although aerobic bulk liquids were also studied. Nitrifying MABs were grown on a hollow-fiber membrane exposed to 3 mg N/L ammonium. The MAB intra-membrane air pressure was varied to achieve different DO concentrations at the biofilm base, and the bulk liquid was anoxic or with 2 g m(-3) DO. With 2.2 and 3.5 g m(-3) DO at the biofilm base, and with an anoxic bulk-liquid, the ammonium fluxes were 0.75 and 1.0 g N m(-2) day(-1), respectively, and nitrite was the main oxidized nitrogen product. However, with membrane DO of 5.5 g m(-3), and either zero or 2 g m(-3) DO in the bulk, the ammonium flux was around 1.3 g N m(-2) day(-1), and nitrate flux increased significantly. For all experiments, the cell density of ammonium oxidizing bacteria (AOB) was relatively uniform throughout the biofilm, but the density of nitrite oxidizing bacteria (NOB) decreased with decreasing biofilm DO. Among NOB, Nitrobacter spp. were dominant in biofilm regions with 2 g m(-3) DO or greater, while Nitrospira spp. were dominant in regions with less than 2 g m(-3) DO. A biofilm model, including AOB, Nitrobacter spp., and Nitrospira spp., was developed and calibrated with the experimental results. The model predicted the greatest extent of nitrite formation (95%) and the lowest ammonium oxidation flux (0.91 g N m(-2) day(-1)) when the membrane DO was 2 g m(-3) and the bulk liquid was anoxic. Conversely, the model predicted the lowest extent of nitrite formation (40%) and the highest ammonium oxidation flux (1.5 g N m(-2) day(-1)) when the membrane-DO and bulk-DO were 8 g m(-3) and 2 g m(-3), respectively. The estimated kinetic parameters for Nitrospira spp., revealed a high affinity for nitrite and oxygen. This explains the dominance of Nitrospira spp. over Nitrobacter spp. in regions with low nitrite and oxygen concentrations. Our results suggest that shortcut nitrification can effectively be controlled by manipulating the DO at the membrane surface. A tradeoff is made between increased nitrite accumulation at lower DO, and higher nitrification rates at higher DO.  相似文献   

18.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of thereactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

19.
The bacterial community in a partial nitrification reactor was analyzed on the basis of 16S rRNA gene by cloning–sequencing method, and the percentages of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the activated sludge were quantified by three independent methods, namely, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) and Double Monod modeling. The clone library results suggested that there were only a dominant AOB and a dominant NOB species in the reactor, belonging to Nitrosomonas genus and Nitrospira genus, respectively. The percentages of NOB in total bacterial community increased from almost 0% to 30% when dissolved oxygen (DO) levels were changed from 0.15 mg/L to 0.5 mg/L, coinciding with the accumulation and conversion of nitrite, while the percentages of AOB changed little in the two phases. The results confirmed the importance of low DO level for inhibiting NOB to achieve partial nitrification. Furthermore, the percentages of AOB and NOB in the total bacteria community were estimated based on the results of batch experiments using Double Monod model, and the results were comparable with those determined according to profiles of DGGE and T-RFLP.  相似文献   

20.
短程硝化(partial nitrification, PN)是一种绿色低碳的生物脱氮创新技术,伴随厌氧氨氧化(anaerobic ammonia oxidation, Anammox)污水脱氮技术的进一步推广,短程硝化作为提供其电子受体的重要环节,已成为了污水脱氮领域的研究热点。氨氧化菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)是该技术的核心竞争微生物,掌握这两类微生物的生态学特征,借助生态学理论和手段调控AOB淘汰NOB,提高种群的可预测性,对于实现稳定高效的短程硝化具有重要意义。本文基于生态学角度介绍了AOB和NOB基础分类、生理性能及生态位分离,重点综述了短程硝化系统中AOB和NOB的生长动力学、群落构建、环境因素和相互作用,最后对这两类微生物的未来研究重点和研究方法进行了展望,为短程硝化工艺的快速启动和稳定运行提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号