首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of sodium chloride salinity and root oxygen deficiency(anoxia) were studied in 11-12d old maize plants (Zea mays L.cv. LG 11) in nutrient solution culture. Transport of 22Na bythe roots to the shoot in 24 h was markedly increased by anoxiawhen the external concentration of NaCl was in the range 0·1-10·9mol m–3. Anoxia severely inhibited uptake of 42K by rootsand its transport to the shoot, so that the ratio of Na+/K+moving into the shoot was increased by a factor of approximately10. When the external concentration of NaCl was increased to2.4 mol m–3, the roots showed much less ability to excludeNa+ under aerobic conditions, and anoxia caused no further increasein the movement of Na+ to the shoot. It is concluded that atthe higher concentration the ability of the roots to excludeNa+, presumably through an active mechanism in the xylem parenchymacells or in the root cortex and transporting Na+ to the outersolution, is saturated by excessive inward diffusion of Na+.The ratio of Na+/K+ transported to the shoot increased by afactor of 600 when the concentration of NaCl was increased from2·4 mol m–3 to 40 mol m–3 and roots weremade anoxic. Such imbalances in the supply of cations to theshoot, particularly when roots are oxygen-deficient, may contributeto salinity damage. Key words: Anaerobic, Anoxic, Oxygen deficiency, Roots, Salinity, Salt stress, Sodium chloride, Zea mays  相似文献   

2.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

3.
Using excised low-salt roots of barley and Atriplex hortenslsthe transport of endogenous potassium through the xylem vesselswas studied It was enhanced by nitrate and additionally by sodiumions which apparently replaced vacuolar potassium which wasthen available in the symplasm of root cells for transport tothe shoot Vacuolar Na/K exchange also has been investigatedby measurements of longitudinal ion profiles in single rootsof both species. In Atriplex roots a change in the externalsolution from K+ to Na+ induced an exchange of vacuolar K+ forNa+, in particular in the subapical root tissues and led toincreased K+ transport and loss of K+ from the cortex. In inverseexperiments a change from Na+ to K+ did not induce an exchangeof vacuolar Na+; merely in meristematic tissues Na+—apparentlyfrom the cytoplasm—was extruded in exchange for K+. Inroots of barley seedlings without caryopsis, as in excised roots,a massive exchange of K+ for Na+ was observed in the continuouspresence of external 1.0 mM Na and 0.2 mM K. This exchange alsowas attributed to the vacuole and was most pronounced in theyoung subapical tissues. It did not occur, however, in the correspondingtissues in roots of fully intact barley seedlings. In these,the young tissues retained a relatively high K/Na ratio alsoin their vacuoles. Similarly, contrasting results were obtainedwith intact and excised roots of Zea mays L. Based on theseresults a scheme of the events that lead to selective cationuptake in intact barley roots is proposed. In this scheme acrucial factor of selectivity is sufficient phloem recirculationof K+ by the aid of which K+ rich cortical cells are formednear the root tip. When matured these cells are suggested tomaintain a high cytoplasmic K/Na ratio due to K+ dependent sodiumextrusion at the plasmalemma and due to recovery of vacuolarK+ by Na/K exchange across the tonoplast. Key words: Potassium/Sodium selectivity, Vacuolar exchange, Xylem transport, Hordeum, Zea, Atriplex  相似文献   

4.
The radial movements of Rb+ and Sr2+ as analogues for K+ andCa2+ were followed by electron probe X-ray microanalysis inaerenchymatous roots of maize (Zea mays L. cv. LG 11). The objectwas to determine the possible pathways by which ions can reachthe xylem when degeneration and lysis of much of the root cortexhas taken place during formation of numerous gas-filled spacesin aerenchymatous roots. After 1, 6 and 24 h uptake of Rb+ andSr2+ from a full strength nutrient solution containing K+ andCa2+, the distribution of these elements was examined. Transverseroot sections, prepared by cryostat sectioning and lyophilization,were used for electron probe X-ray microanalysis. If the cellwalls lining gas-filled spaces become suberized (as reportedin earlier literature), this development might be expected toretard ion movement, but we found that Rb+ or Sr2+ could migrateas readily in the radial wall residues remaining after corticalcell lysis, as in the walls of intact cortical cells. The distributionsof Rb+ and Sr2+ differed, however. The lack of a concentrationgradient for Rb+ across the root was compatible with its transportmainly in the symplast, constituted by occasional files of intactcortical cells bridging the gas-filled spaces. The evident concentrationgradient for Sr2+ was accounted for by its movement to the endodermisby the apoplastic pathway constituted by the walls of intactand lysed cells. Key words: Aeration, aerenchyma, cations, electron probe X-ray microanalysis, Zea mays  相似文献   

5.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

6.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

7.
Maize plants, subjected to 0, 80, 120 and 160 meq l–1salinity using NaCl, showed adverse effects on viability, germinationand tube growth of pollen, besides enhancing the bursting ofpollen. The endogenous levels of various metabolites in pollenwere also affected. Pollen grains from salinized plants hadmore soluble carbohydrates, free amino acids, especially proline,phenols and DNA and less starch, protein and RNA compared tothe non-saline controls. Salinity also resulted in the accumulationof ions such as Na+, K+ and Cl while it caused a reductionin the boron content of pollen. These metabolic disturbancespossibly lead to decreased viability, germination and tube growthof pollen thereby resulting into a reduction in reproductivecapacity of the plants under salt stress. Zea mays L., maize, pollen, viability, germination, salt stress  相似文献   

8.
The growth of Atriplex amnicola, its water and ion relations,and carbohydrate use were investigated in response to the interactiveeffects of salinity and root zone hypoxia in an experiment conductedin nutrient culture. One week of hypoxia in the root zone atboth 50 and 400 mol m–3 NaCl caused the cessation of rootgrowth, a reduction in shoot growth, and adversely affectedwater relations, but not ion relations or carbohydrate concentrations.Two weeks of hypoxia at 400 mol m–3 NaCl resulted in thedeath of root tips, a 20–fold increase in the resistanceto water flow from the exterior of the roots to the leaves,and a further deterioration in water relations. There was alsoa doubling of Cl concentrations in the xylem sap anda doubling of Na+ and Cl concentrations in the leaves.An increase in the concentration of starch in the leaves, andsugars in the leaves, stems and roots, indicated that therewere problems with carbohydrate use rather than supply. Underthe prevailing conditions of low vapour pressure deficit, iontoxicity was the most probable cause of injury to A. amnicolain hypoxic solutions at high salinity. The response of A. amnicolato the interactive effects of salinity and hypoxia were similarto those reported for non-halophytes, but occurred at highersalinities. Key words: Atriplex, hypoxia, salinity, water relations, ion transport, carbohydrate  相似文献   

9.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

10.
Drew, M. C. and Lauchli, A. 1986. The role of the mesocotylin sodium exclusion from the shoot of Zea mays L. (cv. Pioneer3906).—J. exp. Bot. 38: 409–418. The mesocotyl, located between the root and shoot, can stronglyaccumulate Na+ from the ascending transpiration stream, therebypotentially acting as a sink to protect the shoot from excessNa+. To determine the quantitative importance of the mesocotylas a Na+ sink, we grew plants with either short (9·0mm) or long(21 mm) mesocotyls, the latter resembling the sizefound in field-grown plants. At 13 d, plants were transferredfrom Na + -free nutrient solution to a 22Na+ labelled solutionin which the concentration of NaCl was (mol m–3) 1·0,10 or 100. The concentration of Na+ accumulated in the mesocotylin 24 h (g–1 fr. wt.) exceeded that in the roots thatwere directly exposed to the nutrient solution. The amountsof 22Na+ retained in the long mesocotyl were about double thatin the short ones and increased with time of exposure and NaClconcentration. At 1·0 and 10 mol m3 NaCl, theamounts of 22Na+ retained in the mesocotyl were 6–19%of those reaching the shoot in 24 h, but with 100 mol m–3NaCl, a damaging concentration for maize, this declined to 3–8%.The mesocotyl, even as a fully elongated structure is, therefore,unlikely to provide an appreciable alternative sink for Na+when NaCl reaches injurious concentrations. Key words: Ion transport, potassium, roots, salinity  相似文献   

11.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

12.
Tolerance to NaCl was studied in cell suspension cultures ofKosteletzkya virginica (L.) Presl. (Malvaceae), a dicotyledonoushalophyte that grows in tidal marshes of the eastern UnitedStates. Growth of salinized cultures was significantly inhibitedat high (255 mol m–3 NaCl), but not at lower externalsalinities. Adjustment of cell suspensions to Nacl was rapid,with the duration of the normal growth cycle unaffected by salinity.Maximum biomass was attained when cultures were exposed to NaClduring early log growth. Patterns of inorganic ion accumulationreflected the utilization of both Na+ and K+ as osmotica, withNa+ content substantially increasing when cells were grown atan external salinity sufficient to reduce growth. K+ uptakeselectivity was high and Na+/K+ ratios were low in salt-treatedcultures even though K+ content was somewhat lower comparedto unsalinized cultures. Free proline and microsomal lipid contentincreased in salt-treated cell cultures. Key words: Kosteletzkya virginica, halophyte, salt tolerance, cell suspension culture  相似文献   

13.
The effect of tris, choline, and ethanolamine chlorides on theactivity of Mg2–dependent ATPase in membrane fractions(cell walls, mitochondria, and microsomes) of Zea mays L. (cv.Neve Yaar 22), Avena saliva L. (cv. Mulga), and Hordeum vulgareL. (cv. Omer) was compared with the effect of KC1 and NaCl.Considerable salt effects on apparent Mg2+ATPase activity werefound only at relatively high pH values (8.2) at which Mg2+.ATPaseactivity was low in the absence of monovalent cation salts.The Mg2+-dependent ATP hydrolysis by ATPases from all the membranefractions increased in the presence of at least one of the organiccations to the same extent as in the presence of KCI or NaCl.The monovalent organic cations are only very slowly absorbedby corn roots in comparison with K+ and Na+. It is concluded that monovalent salt effects on ATPase fromthese plant roots are not cation specific and not related tothe capability of root cells to absorb cations. Present evidencefor the existence of a cation-transport ATPase in plant tissueis critically reviewed.  相似文献   

14.
To study the effect of salt (NaCl) on root elongation we developeda device that measures this effect by means of a Linear VariableDifferential Transformer (LVDT). To test the efficacy of thedevice we performed experiments demonstrating that (a) ratesof elongation of primary maize (Zea mays L.) roots were comparableto elongation rates of primary roots growing freely in solutionculture; and (b) chilling and low O2 concentrations of the solutionelicited the expected responses. Inhibition of root elongation by 75 mol m–3 NaCl was gradual.At an iso-osmotic concentration, mannitol did not inhibit rootgrowth, suggesting that the inhibition was not due to osmoticfactors but rather to effects of salt on metabolism. The additionof supplemental Ca (10 mol m–3) ameliorated this stressfulcondition. Timing of the application of Ca was critical. Treatmentwith Ca after addition of NaCl only partially restored growth,but pretreatment with Ca completely prevented the inhibitionof growth by salt stress. Key words: Root growth, Zea mays L., salinity  相似文献   

15.
Ultrastructural features and the distribution of soluble ionshave been examined in mature roots of Zea mays plants grownin both NaCl and Na2SO4 salinities. When the plants were grown in either salt, the Na concentrationincreased proximally along the root with a concomitant declinein the K concentration. Both trends were reversed in the shoot. X-ray microanalysis of deep-frozen, fully hydrated specimensshowed that in salt-treated roots Na, and Cl, or S were distributedabout stoichiometrically in the cortex and endodermis. Na wasusually less concentrated than the anion in the lumens of thevessels, but was concentrated markedly relative to either Clor S in the adjoining xylem parenchyma cells. In the older, proximal parts of seminal roots of plants grownboth without salt (controls) and in the presence of either NaClor Na2SO4, wall developments occurred in xylem parenchyma cellsat the half-bordered pits in which the cell wall became markedlythicker and possessed a loosely packed fibrillar structure.These structures were not comparable with the transfer-celltype of protuberances reported in the roots of other species. In the xylem parenchyma of plants grown in the presence of Na2SO4there were dramatic increases in the quantities of rough endoplasmicreticulum, ribosomes, and mitochondria relative both to controlsand NaCl treatments. The results are discussed in relation to the possible functionof the xylem parenchyma of the mature root in the reabsorptionof Na from the xylem sap, which may mitigate adverse effectsof salinity in salt-sensitive glycophytes.  相似文献   

16.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

17.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

18.
Interaction of Salinity and Anaerobiosis in Barley and Rice   总被引:3,自引:0,他引:3  
Barley and rice at the early tillering stage were exposed simultaneouslyto anaerobiosis and high [NaCl]. Barley was grown at 0.5, 70,and 125 mol m–3 NaCl, and rice at 2, 20, 40, and 80 molm–3 NaCl. Surprisingly, anaerobiosis only slightly aggravatedthe adverse effects of high [NaCl] on root and shoot growthof both species. For rice and barley grown under aerobic conditions, high [NaCl]increased [Na+] and [Cl] and decreased [K+] in both rootsand shoots. However, the changes in ion concentrations in theshoots were smaller for rice than for barley. For roots of barley, anaerobiosis decreased [Na+], [Cl],and [K+] at both low and high [NaCl], possibly as a result ofinhibition of active ion accumulation. For barley shoots, anaerobiosisincreased [Na+] and [Cl], but only at high salinity;in contrast, [K+] was reduced by anaerobiosis at both low andhigh [NaCl]. These results indicate that anaerobiosis slightlyincreased the permeability of the barley root system to Na+and Cl. For rice, the most important interaction between salinity andanaerobiosis occurred in the shoots, where anaerobiosis increased[Na+] and decreased [K+], particularly at 40 and 80 mol m–3NaCl, while there was no interaction between anaerobiosis andsalinity for Cl uptake. It is therefore suggested thatanaerobic treatment of rice decreased the selectivity for K+over Na+ of cation transport to the shoots, at least for plantsgrown at high salinities.  相似文献   

19.
An attempt was made to explain the abnormal behaviour of stomatain Capsicum scabrous diminutive, a wilty pepper mutant. Stomatalmovement in the pepper plant was found to be associated withchanges in the ion content of the guard cells. These changeswere smaller in the mutant than in the normal plants. In addition,total ion content was higher in the mutant under both controland NaCl treatments. Na+ substituted K+ in its function in stomatalmovement under high salinity. This phenomenon was more pronouncedin the mutant plants. Analysis of whole root systems and leavesof plants grown on solutions of high NaCl or KCl concentrationconfirmed that the regulation of K+ and Na+ uptake mechanismswas not functioning properly in the mutant. Evidence was presentedthat the difference in K+ staining between mutant and normalepidermal cells is an artefact resulting from the differencein leaf anatomy.  相似文献   

20.
BARLOW  PETER W. 《Annals of botany》1985,55(3):445-457
The nuclear DNA content of metaxylem cells in roots of Zea mayscv. Golden Bantam reaches 16C or 32C by successive rounds ofDNA endoreduplication. Each phase of endoreduplication (endo-S)is separated by a non-DNA synthetic phase (endo-G). These phasesseem to occur in zones at fixed distances from the root tip.The duration of the phases in two of the endoreduplication cycles(4C–8C, 8C–16C) has been estimated in two ways.The first makes use of the rate of movement of cells throughthe positions along the root where the different phases of thecycle are occurring, the second uses labelling with methyl-[3H]thymidineand autoradiography. Both methods indicate that the endo-S phaseswhich cause the nuclear DNA content to rise from 4C to 8C andfrom 8C to 16C last 8–10 h, and that the intervening endo-Gphase lasts 8–12 h. DNA endoreduplication keeps pace withthe increase of nuclear volume; cell volume increases at a morerapid rate, however. Comparison of the endoreduplication cyclein the metaxylem with the mitotic cycle in the adjoining filesof parenchyma cells shows that the mitotic cells complete theircycle more slowly. DNA synthesis, endoreduplication cycle, mitotic cycle, root apex, Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号