首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Both male and female field crickets (Gryllus bimaculatus) autotomize front (tympanal) limbs more slowly than hind limbs. Arguably, this pattern could reflect possible differences in the mechanism of limb autotomy. However, we demonstrate that, for females, limb autotomy is also dependent on their mating status: virgin females autotomize front legs significantly more slowly than mated females. This response suggests a central control for leg autotomy in these animals, and less readiness to autotomize a front leg, possibly because the tympanum is crucial for mate location.  相似文献   

2.
Leg autotomy and regeneration can have severe impacts on survival and reproduction, and these impacts may be even more pronounced in animals with multifarious legs, such as decapods. Thus, determining the patterns and frequency of autotomy and regeneration could reveal the effects of these processes on the individual and population level. We investigated whether some legs are lost more often than others and if all legs are equally likely to be regenerated. We sampled nearly 500 purple shore crabs (Hemigrapsus nudus) and showed that (1) most animals are found with at least one injured leg, (2) the patterns of autotomy differ between males and females, and (3) successful claw regeneration is unlikely in both males and females. Future work with H. nudus and other grapsid crabs will elucidate how patterns seen here relate to other developmental and ecological factors.  相似文献   

3.
We examined levels of limb injury in the red king crab Paralithodes camtschaticus at 3 sites in the coastal waters of the Barents Sea. High incidences of autotomy were registered at all sites examined averaging 46.6% in Dolgaya Bay (DLB), 42.6% in Yarnyshnaya Bay (YRB) and 45.6% in Dalnezelenetskaya Bay (DZB). These levels were greater than in deep waters of the Barents Sea. Significant inter-annual increases in limb loss rates were observed in DZB. The positive correlation of autotomy frequency with the body size was observed for the females in YRB and DZB. The frequency of autotomy was independent of sex for all sites and size groups except for the crabs with CL > 135 mm in DZB where the females had autotomized limbs more often than the males. The chance of injury was higher for posterior legs. Right-side limbs (especially, claws) were lost more often than left-side limbs. The observed frequency of crabs within limb loss patterns did not differ significantly from the expected levels in P. camtschaticus collected in DLB and in YRB but was significantly different than a frequency expected if limb losses were independent in DZB. Our results suggest that crabs in DZB are more affected by limb-inducing factors than individuals from DLB or YRB. The main factors affecting limb injuries in P. camtschaticus in the coastal Barents Sea are predator pressure (mainly for immature crabs), and illegal fishing and recreational diving (for mature crabs).  相似文献   

4.
A total of 1023 individuals of the common shore crab, Carcinus maenas (L.), were obtained from the environs of Whitby Harbour and Robin Hood's Bay. The bulk of the sample was taken from the sublittoral zone, but crabs from a sheltered shore were included. Each crab was measured, sexed and examined for the incidence of autotomized and regenerated limbs.There was a positive correlation between the incidence of autotomy and carapace width for crabs in both the sublittoral zone and the exposed intertidal zone. In sublittoral crabs the males suffered a higher incidence of autotomy than did the females and the incidence of cheliped autotomy was higher than for the walking limbs. The discrepancy between the loss of the chelipeds and walking limbs was reflected in a similar disparity between the occurrence of the regenerated chelipeds and walking limbs.Crabs on an exposed shore suffered a higher incidence of autotomy than did those from a sheltered shore. There were more crabs with cumulative limb losses than would be expected which suggests that once a crab enters into a state of autotomy it becomes increasingly vulnerable to the loss of another limb. Only 1 % of the population of sublittoral crabs would be expected to carry the loss of five limbs at once. No crabs were found with six or more limbs missing.  相似文献   

5.
Describe reproductive behavior and mating system of the clown goby from field observations. Clown gobies exhibit a loosely haremic mating system. Pairs construct burrows at the base of cattails, the roots of which provide structural support and a spawning substrate. Larger males monopolize multiple burrows, each with an individual female. After spawning, males camouflage burrow entrances with sand and females brood developing young for 4 days. Males continue to guard the covered nests in 50% of observed brooding periods. Burrows are also used as shelter from predators. Both sexes confront intruders but only males exhibit a distinct color response to juvenile blue crabs, Callinectes sapidus, the most significant predator. The male color response appeared to mimic the color of adult blue crabs, a known predator of juvenile crabs, perhaps acting as a deterrent. The presence of the predatory blue crab may require one parent to perform deterrent displays, promoting female care in this mating system.  相似文献   

6.
Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf‐footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind‐limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind‐limb weapon can, in some cases, lead to greater fertilization success.  相似文献   

7.
How do females select a mate when they have mating preferences for multiple male traits? In experimental studies, female fiddler crabs (Uca mjoebergi) show a strong preference for males with larger claws and higher wave rates. In the field, there is no correlation between male claw size and observed wave rate. Here we document natural mating behaviour and show that females approach males who wave at a higher rate than nearby competitors. On average, an approached male had a significantly larger claw than his two nearest neighbours but did not differ in size from his two closest waving competitors. In general, smaller males were less likely to wave at approaching females. Females therefore approached mates based directly on wave rate but, because smaller males were less likely to wave, this indirectly resulted in female choice for larger than average males. Our study raises two issues. First, how do we relate the field results to previous experimental studies showing a female preference for larger claws? Second, in U. mjoebergi, males defend smaller neighbours against intruders. Our study suggests that one benefit of such defence coalitions is to decrease the number of immediate competitors present during female mate choice by retaining smaller neighbours.  相似文献   

8.
Few studies have attempted to determine how physical injury affects predators. One of the ways that physical injury can be expressed is by autotomy or the voluntary loss of a body part. Here, we examined whether the loss of specific legs affects the foraging success of the wolf spider Rabidosa santrita (predator) on another species, Pardosa valens (prey). We also wanted to identify whether the loss of legs in both the predator and prey would impact the outcome of a predation event. Both predator and prey were collected from a creek bed at Portal, AZ, in 2012. Predators were randomly assigned groups where all prey items were intact or all prey had one randomly chosen leg IV removed. Within these groups, predators were organized into a control, leg I autotomy, or leg IV autotomy treatment. All predators had their pre‐ and post‐foraging running speed determined. Predators were introduced into chambers with five prey items and allowed to forage for 1 h. The leg position autotomized or the comparison of pre‐ and post‐foraging trials had no effect on predator running speed. Additionally, there was no significant effect of either predator or prey leg treatment on the total proportion of prey items captured by the end of the foraging trials. Survival analyses indicated that intact prey items tended to have a higher survival rate when predators were missing a leg IV than when predators were intact. When both the predator and prey were missing legs, no significant difference in prey survival rates was detected. We suggest that for predators that inhabit complex, heterogeneous habitats and are classified as ambush predators, the loss of a limb may affect prey capture success, especially when the prey is intact, but that increased sample size is necessary to determine whether this trend is significant.  相似文献   

9.
A number of species have the ability to autotomize limbs voluntarily, but animals that have lost limbs often face substantial costs. We examined the frequency of leg loss and its effects on competitive ability and development in the spider Holocnemus pluchei (Araneae: Pholcidae), a family of spiders known for its readiness to autotomize legs. Leg loss was common in field populations, with 7.5% of all surveyed spiders missing at least one leg, most commonly one of the anterior pair. More spiders were missing multiple legs than expected by chance, suggesting that leg loss events are not independent. Large adult spiders were missing legs more frequently than were small spiders. The competitive ability of injured males was tested in three contexts. In the field, no effect of leg loss was found on the ability of spiders to remain in webs into which they were introduced. In the laboratory, no effect of leg loss was found on the ability to fight with a single opponent over a prey, except that injured spiders were more likely to lose high-intensity fights. There was no difference between intact and injured males in their ability to compete with three females for limited prey. Leg loss significantly affected development time. The moult interval during the instar in which the injury occurred increased by approximately 15%. However, the growth rate for injured spiders was slightly but not significantly faster in the instar following leg loss, and total development time of the two instars together did not differ significantly between treatments. No spider showed any signs of regeneration. We conclude that, although there were some statistically significant differences between intact and injured males, these are unlikely to have major impacts on fitness, in contrast to findings in other species. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

10.
Autotomy, voluntary shedding of body parts to permit escape, is a theoretically interesting defense because escape benefit is offset by numerous costs, including impaired future escape ability. Reduced sprint speed is a major escape cost in some lizards. We predicted that tail loss causes decreased speed in males and previtellogenic females, but not vitellogenic females already slowed by mass gain. In the striped plateau lizard, Sceloporus virgatus , adults of both sexes are subject to autotomy, and females undergo large increases in body condition (mass/length) during vitellogenesis. Time required for running 1 m was similar in intact autotomized males and previtellogenic females, but increased by nearly half after autotomy. Vitellogenic females were slower than other lizards when intact, but their speed was unaffected by autotomy. Following autotomy, speeds of all groups were similar. Thus, speed costs of autotomy vary with sex and reproductive condition: decreased running speed is not a cost of autotomy in vitellogenic females or presumably gravid females. Costs of autotomy are more complex than previously known. Speed and other costs might interact in unforseen ways, making it difficult to predict whether strategies to compensate for diminished escape ability differ with reproductive condition in females.  相似文献   

11.
Crickets can escape death by autotomizing a limb when attacked by predators. In contrast with this benefit, autotomized individuals pay an immediate cost of escape speed and mating ability. Therefore, an adaptive response compensating for the cost of autotomy might be advantageous in autotomized individuals. In this study, we examined whether autotomy induced behavioral plasticity compensating for future cost in the band-legged ground cricket Dianemobius nigrofasciatus. Behavioral traits of D. nigrofasciatus were compared between autotomized and intact individuals. Frequency of calling behavior was higher for autotomized males. This behavior might be advantageous because females prefer actively calling males. In contrast with calling behavior, the frequencies of hiding behavior did not vary between autotomized and intact crickets, irrespective of sex. It might be disadvantageous for both sexes to hide, because females could not find hiding males and hiding females could not find males. These results indicated autotomy-induced behavioral plasticity that might reduce the cost of autotomy.  相似文献   

12.
Male hermit crabs perform precopulatory mate-guarding behavior during their reproductive season. As females generally cannot reject guarding attempts by males, male guarding prevents females from inspecting and choosing other male mates. However, as guarding males are often replaced by other males through competition for females during the guarding phase, females may be able to select males by delaying their copulation. To examine the possibility of female choice by hermit crabs, we investigated whether female Pagurus filholi that were being guarded in the field were ready to copulate and spawn. We found that about 30% of females guarded in the field were ready to spawn, indicating that guarded females delayed copulation with their current male. Our results suggest that by delaying copulation females may exploit male–male competition to choose dominant males. However, delaying copulation reduced the spawning potential of females. Hence, there is a trade-off between waiting for the opportunity to mate with a dominant male and decreased spawning success if females exploit male–male competition.  相似文献   

13.
The species, Pterophyllum scalare distinguishes itself by its breeding behavior, involving competition for territory, sexual partners, courtship and parental care. The purpose of this study was to identify the mating system adopted by this species of fish. Twenty males and twenty females were observed under semi-natural and experimental conditions to test the hypothesis of serial monogamy. Under semi-natural conditions, after the third breeding cycle, the couples changed mates. Under experimental conditions, the couples changed partners after the first breeding cycle. Under experimental conditions, mate recognition was investigated through the preference of the females, indicated by the time they spent with the males. The females were available or not for courtship from new males, depending on their aggressiveness or submission. The larger and more aggressive males obtained new mating opportunities while the submissive males were rejected by the females. The mated fish were aggressive towards intruders in the presence of the mate, protecting their pair bond. In the interval between breeding cycles, the couples did not display aggression towards intruders, confirming the hypothesis of serial monogamy. Best mate selection by the females and the opportunity of new matings for both sexes influenced the reproductive success of this species.  相似文献   

14.
Studies of several bird species have shown that coloured leg bands may affect a male's success in mate attraction and/or mating competition. From a colour band experiment in the field, we have previously reported that male bluethroats, Luscinia s. svecica, with blue and orange bands (BO males) guarded their mates less intensely at the peak of female fertility, and spent more time advertising for additional mates, than males banded with non-BO colours. These responses indicated that BO males experienced less threat to their paternity than did non-BO males, possibly mediated through an increased attractiveness. Here we present paternity analyses of the broods from the field study and test whether there were differences between the two male groups in within-pair or extrapair paternity. There were no significant differences between the two groups of males in paternity, suggesting effective male protection of paternity. However, extrapair paternity was infrequent in the 2 years of the field experiment; hence, the power in detecting effects on paternity does not allow a definitive conclusion on this issue. We also conducted an aviary experiment in which females were given the choice between a BO male and a non-BO male, to test whether females had preferences for particular colour bands. Females did not associate more with BO males, as would have been expected if these males were more attractive in social mate choice. Our results suggest that the effects of colour bands on social mate choice and paternity are, at best, weak. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

15.
Autotomy, the voluntary shedding or detachment of a body part at a determined cleavage plane, is a common anti-predation defense mechanism in several animal taxa, including arthropods. Among arachnids, autotomy has been observed in harvestmen, mites, and spiders, always involving the loss of legs. Autotomy of the opisthosoma (abdomen) was recently reported in a single species of the Neotropical buthid scorpion genus Ananteris Thorell, 1891, but few details were revealed. Based on observations in the field and laboratory, examination of material in museum collections, and scanning electron microscopy, we document autotomy of the metasoma (the hind part of the opisthosoma, or ‘tail’) in fourteen species of Ananteris. Autotomy is more common in males than females, and has not been observed in juveniles. When the scorpion is held by the metasoma, it is voluntarily severed at the joints between metasomal segments I and II, II and III, or III and IV, allowing the scorpion to escape. After detachment, the severed metasoma moves (twitches) automatically, much like the severed tail of a lizard or the severed leg of a spider, and reacts to contact, even attempting to sting. The severed surface heals rapidly, scar tissue forming in five days. The lost metasomal segments and telson cannot be regenerated. Autotomy of the metasoma and telson results in permanent loss of the posterior part of the scorpion’s digestive system (the anus is situated posteriorly on metasomal segment V) and the ability to inject venom by stinging. After autotomy, scorpions do not defecate and can only capture small prey items. However, males can survive and mate successfully for up to eight months in the laboratory. In spite of diminished predation ability after autotomy, survival allows males to reproduce. Autotomy in Ananteris therefore appears to be an effective, adaptive, anti-predation escape mechanism.  相似文献   

16.
Leg autotomy can be a very effective strategy for escaping a predation attempt in many animals. In spiders, autotomy can be very common (5–40% of individuals can be missing legs) and has been shown to reduce locomotor speeds, which, in turn, can reduce the ability to find food, mates, and suitable habitat. Previous work on spiders has focused mostly on the influence of limb loss on horizontal movements. However, limb loss can have differential effects on locomotion on the nonhorizontal substrates often utilized by many species of spiders. We examined the effects of leg autotomy on maximal speed and kinematics while moving on horizontal, 45° inclines, and vertical (90°) inclines in the cellar spider Pholcus manueli, a widespread species that is a denizen of both natural and anthropogenic, three‐dimensional microhabitats, which frequently exhibits autotomy in nature. Maximal speeds and kinematic variables were measured in all spiders, which were run on all three experimental inclines twice. First, all spiders were run at all inclines prior to autotomization. Second, half of the spiders had one of the front legs removed, while the other half was left intact before all individuals were run a second time on all inclines. Speeds decreased with increasing incline and following autotomy at all inclines. Autotomized spiders exhibited a larger decrease in speed when moving horizontally compared to on inclines. Stride length decreased at 90° but not after autotomy. Stride cycle time and duty factor increased after autotomy, but not when moving uphill. Results show that both incline and leg autotomy reduce speed with differential effects on kinematics with increasing incline reducing stride length, but not stride cycle time or duty factor, and vice versa for leg autotomy. The lack of a significant influence on a kinematic variable could be evidence for partial compensation to mitigate speed reduction.  相似文献   

17.
Outbreaks of an unidentified ciliate have occurred on several occasions in blue crabs from Chesapeake Bay held during winter months in flow-through systems. The parasite was initially thought to be Mesanophrys chesapeakensis, but molecular analysis identified it as Orchitophyra stellarum, a facultative parasite of sea stars (Asteroidea). We investigated the host-parasite association of O. stellarum in the blue crab host. Crabs were inoculated with the ciliate, or they were held in bath exposures after experimentally induced autotomy of limbs in order to determine potential mechanisms for infection. Crabs inoculated with the ciliate, or exposed to it after experimental autotomy, rapidly developed fatal infections. Crabs that were not experimentally injured, but were exposed to the ciliate, rarely developed infections; thus, indicating that the parasite requires a wound or break in the cuticle as a portal of entry. For comparative purposes, fiddler crabs, Uca minax, were inoculated with the ciliate in a dose-titration experiment. Low doses of the ciliate (10 per crab) were sometimes able to establish infections, but high intensity infections developed quickly at doses over 500 ciliates per crab. Chemotaxis studies were initiated to determine if the ciliate preferentially selected blue crab serum (BCS) over other nutrient sources. Cultures grown on medium with BCS or fetal bovine serum showed some conditioning in their selection for different media, but the outcome in choice experiments indicated that the ciliate was attracted to BCS and not seawater. Our findings indicate that O. stellarum is a facultative parasite of blue crabs. It can cause infections in exposed crabs at 10–15 °C, but it requires a portal of entry for successful host invasion, and it may find injured hosts using chemotaxis.  相似文献   

18.
In mid-Atlantic salt marshes, reproductively active male sand fiddler crabs, Uca pugilator, use a single greatly enlarged major claw as both a weapon to defend specialized breeding burrows from other males and an ornament to attract females for mating. During the summer breeding season, females strongly prefer to mate with males controlling burrows in open areas high on the shore. Food availability decreases while temperature and desiccation stress increase with increasing shore height, suggesting that the timing and location of fiddler crab mating activity may result in a potential trade-off between reproductive success and physiological condition for male crabs. We compared thermal preferences in laboratory choice experiments to body temperatures of models and living crabs in the field and found that from the perspective of a fiddler crab, the thermal environment of the mating area is quite harsh relative to other marsh microhabitats. High temperatures significantly constrained fiddler crab activity on the marsh surface, a disadvantage heightened by strongly reduced food availability in the breeding area. Nevertheless, when the chance of successfully acquiring a mate was high, males accepted a higher body temperature (and concomitantly higher metabolic and water loss rates) than when the chances of mating were low. Likewise, experimentally lowering costs by adding food and reducing thermal stress in situ increased fiddler crab waving display levels significantly. Our data suggest that fiddler crabs can mitigate potential life history trade-offs by tuning their behavior in response to the magnitude of both energetic and non-energetic costs and benefits.  相似文献   

19.
Fiddler crabs show two different mating modes: either females search and crabs mate underground in male burrows, or males search and crabs mate on the surface near female burrows. We explored the relationship between crab density, body size, the searching behavior of both sexes, and the occurrence of both mating modes in the fiddler crab Uca uruguayensis. We found that crabs change their mating mode depending on their size and crab density. Crabs mated mostly on the surface at low densities, and underground at high densities. The proportion of wandering receptive females but not courting males accounted for the variation in mating modes. This suggests that whether crabs mate underground (or on the surface) is determined by the presence (or absence) of searching females. We found that the change in the mating mode affected the level of assortative mating; males mating underground were bigger than those mating on the surface, suggesting active female choice. Given that fiddler crabs experience multiple reproductive cycles, they are prone to showing behavioral plasticity in their mating strategy whenever the payoffs of using different mating modes differ between reproductive events. Our results suggest that the incorporation of different levels of environmental variability may be important in theoretical models aimed at improving our understanding of the evolution of alternative mating tactics and strategies.  相似文献   

20.
Bird song functions in mate choice and species recognition, and hence variation in song can contribute to divergence and reproductive isolation. We used playback experiments to examine male response to conspecific song in Darwin’s small tree finch. Song is a reliable signal of bill morphology in this species, and individuals displayed stronger response to songs of males with similar bill size. These findings suggest that, in the context of territorial defence, males discriminate between intruders on the basis of song characteristics. Given that male response to song may be examined as a proxy for female response, this study also implies that females could discriminate between males on the basis of song. The findings suggest that: (1) perceived threat of intruders is related to reproductive competition and not fighting assessment, and (2) geographical isolation is not required for biologically meaningful song variation in Darwin’s finches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号