首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.  相似文献   

2.
An aleurain-like protein, BoCP5, is up-regulated during harvest-induced senescence in broccoli floret and leaf tissue. BoCP5 is most closely related to an Arabidopsis protein (91%, AAF43041) and has 71% identity to barley aleurain (P05167). The mRNA for this gene accumulates within 6 h after harvest in broccoli florets, and its expression is reduced in tissue that has been held in senescence-delaying treatments (e.g. water, sucrose feeding, controlled atmosphere). The gene is also expressed in leaves during aging-related and harvest-induced senescence. Analysis of protein bands that cross-react with antibodies raised to the bacterial BoCP5 fusion protein, revealed prominent immunoreactive bands at ca. 26, 28, 31, and 38 kD in floret tissue. The 31 kD band was absent in protein extracts from leaf tissue. Agrobacterium-mediated transformation was used to produce transgenic broccoli plants with down-regulated BoCP5. A reduction in the postharvest expression of BoCP5 in floret tissue was achieved for four transgenic lines in the current study. In three of these lines postharvest floret senescence (yellowing) was delayed, and florets contained significantly greater chlorophyll levels during postharvest storage at 20 °C than wild-type plants. Line 4 showed the greatest down-regulation of BoCP5, and in this line postharvest protease activity remained at pre-harvest levels, and the yield of soluble proteins extracted from florets after harvest was significantly greater than that of wild-type tissue.  相似文献   

3.
E M Klann  B Hall    A B Bennett 《Plant physiology》1996,112(3):1321-1330
Invertase (beta-fructosidase, EC 3.2.1.26) hydrolyzes sucrose to hexose sugars and thus plays a fundamental role in the energy requirements for plant growth and maintenance. Transgenic plants with altered extracellular acid invertase have highly disturbed growth habits. We investigated the role of intracellular soluble acid invertase in plant and fruit development. Transgenic tomato (Lycopersicon esculentum Mill.) plants expressing a constitutive antisense invertase transgene grew identically to wild-type plants. Several lines of transgenic fruit expressing a constitutive antisense invertase gene had increased sucrose and decreased hexose sugar concentrations. Each transgenic line with fruit that had increased sucrose concentrations also had greatly reduced levels of acid invertase in ripe fruit. Sucrose-accumulating fruit were approximately 30% smaller than control fruit, and this differential growth correlated with high rates of sugar accumulation during the last stage of development. These data suggest that soluble acid invertase controls sugar composition in tomato fruit and that this change in composition contributes to alterations in fruit size. In addition, sucrose-accumulating fruit have elevated rates of ethylene evolution relative to control fruit, perhaps as a result of the smaller fruit size of the sucrose-accumulating transgenic lines.  相似文献   

4.
Changes in isoperoxidases involved in chlorophyll (Chl) degradation of stored broccoli (Brassica oleracea L.) florets and their control by heat treatment (HT) were determined. Chl a and b contents in non-heat-treated broccoli florets decreased greatly after 2 days at 15 degrees C, whereas the contents in heat-treated florets (50 degrees C for 2 h) showed almost no change. Three isoperoxidases involved in Chl degradation were detected by means of molecular exclusion chromatography and the molecular weights of those isoperoxidases were about 95 (Type I), 67 (Type II) and 56 (Type III) kDa, respectively. Only Type I was detected in broccoli florets immediately after harvest, and its activity in non-heat-treated broccoli increased greatly during storage. Both Type II and Type III were present in non-heat-treated broccoli with floret senescence. HT suppressed the enhancement of all of the isoperoxidase activities. Cycloheximide treatment also effectively retarded the increase in Types I, II and III isoperoxidase activities concomitant with the suppression of floret yellowing. The K(m) values corresponding to Chl a of Type II and Type III were lower than Type I, and the V(max)/K(m) values corresponding to Chl a of Type II and Type III were higher than Type I. This suggests that both Types II and III could be closely associated with Chl degradation in broccoli florets and that HT might inhibit floret senescence by suppression of isoperoxidase activities.  相似文献   

5.
Ascorbate metabolism in harvested broccoli   总被引:2,自引:0,他引:2  
  相似文献   

6.
Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days’ post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence.  相似文献   

7.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

8.
The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
To unravel the roles of soluble acid invertase in muskmelon (Cucumis melo L.), its activity in transgenic muskmelon plants was reduced by an antisense approach. For this purpose, a 1038 bp cDNA fragment of muskmelon soluble acid invertase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the stems were obviously thinner. Transmission electron microscopy revealed that degradation of the chloroplast membrane occurred in transgenic leaves and the number of grana in the chloroplast was significantly reduced, suggesting that the slow growth and weaker phenotype of the transgenic plants may be due to damage to the chloroplast ultrastructure, which in turn resulted in a decrease in net photosynthetic rate. The sucrose concentration increased and levels of acid invertase decreased in transgenic fruit, and the fruit size was 60% smaller than that of the control. In addition, transgenic fruit reached full-slip at 25 d after pollination (DAP), approximately 5 d before the control fruit (full-slip at 30 DAP), and this accelerated maturity correlated with a dramatic elevation of ethylene production at the later stages of fruit development. Together, these results suggest that soluble acid invertase not only plays an important role during muskmelon plant and fruit development but also controls the sucrose content in muskmelon fruit.  相似文献   

10.
11.
12.
This study was undertaken to characterize the programmed cell death (PCD) processes that occur during detached and natural on-plant senescence and correlate them with the expression of putative regulatory genes that may be involved in the process. DNA fragmentation and TUNEL analysis of broccoli florets showed that DNA was processed into fragments of approximately 180 bp after 48 h of harvest-induced tissue senescence. Characteristic laddering patterns were also visible in Arabidopsis leaves undergoing natural on-plant senescence and during detached senescence. Several recently isolated plant proteins have been assigned a PCD role, for example, the zinc finger containing protein, LSD1 (lesion simulating disease); Bax inhibitor (BI); and serine palmitoyltransferase (SPT), an enzyme in the sphingolipid signalling pathway. Two cDNAs encoding each of these proteins were isolated from broccoli (BoBI-1, BoBI-2, BoLSD1, BoLSD2, BoSPT1, BoSPT2), and the mRNAs increased during harvest-induced senescence in floret tissue. Expression of the Arabidopsis homologues (AtBI-1, AtLSD1, AtSPT1) were also characterized during detached leaf senescence in Arabidopsis leaves. AtBI-1 expression was constitutively expressed during detached senescence, AtLSD1 expression remained constitutively low, and AtSPT1 expression increased during detached senescence.  相似文献   

13.
14.
15.
Under some cell culture conditions, recombinant glycoprotein therapeutics expressed in Chinese hamster ovary (CHO) cells lose sialic acid during the course of the culture (Sliwkowski et al., 1992; Munzert et al., 1996). A soluble sialidase of CHO cell origin degrades the expressed recombinant protein and has been shown to be released into the culture fluid as the viability of the cells decreases. To reduce the levels of the sialidase and to prevent desialylation of recombinant protein, a CHO cell line has been developed that constitutively expresses sialidase antisense RNA. Several antisense expression vectors were prepared using different regions of the sialidase gene. Co-transfection of the antisense constructs with a vector conferring puromycin resistance gave rise to over 40 puromycin resistant clones that were screened for sialidase activity. A 5' 474 bp coding segment of the sialidase cDNA, in the inverted orientation in an SV 40-based expression vector, gave maximal reduction of the sialidase activity to about 40% wild-type values. To test if this level of sialidase would lead to increased sialic acid content of an expressed recombinant protein, the 474 antisense clone was employed as a host for expression of human DNase as a model glycoprotein. The sialic acid content of the DNase produced in the antisense cultures was compared with material made in the wild-type parental cell line. About 20-37% increase in sialic acid content, or 0.6-1.1 mole of additional sialic acid out of a total of 3.0 mole on the product, was found on the DNase made in the antisense cell lines.  相似文献   

16.
Tuberising stolon tips of potato ( Solanum tuberosum L. cv. Record) accumulate starch and sucrose but the hexose content, particularly fructose, declines rapidly. Similar changes occur in the region 2 cm behind the swelling apex but the decline in glucose is far more pronounced than in the developing tuber. Tuberisation is characterised by an apparent switch from an invertase-dominated sucrolytic system (both acid and alkaline invertases [EC 3.2.1.26] are present) to one dominated by sucrose synthase (EC 2.4.1.13). Sucrose synthase and fructokinase (EC 2.7.1.4) activities were, at a maximum, ca 10- and 5-fold higher, respectively in the swelling stolon tip compared with the non-tuberising region. At the highest starch contents attained, the starch level in the young developing tuber was approximately double that in the adjacent non-tuberising stolon region. Immunoblots revealed that developmental changes in sucrose synthase. fructokinase and alkaline invertase polypeptides corresponded with enzyme activities. Antibodies raised against the N-terminal amino acid sequence of a soluble invertase purified from mature tubers did not detect significant quantities of a polypeptide in stolons and young, developing tubers. Antibodies raised against an in vitro expression product of an apoplastic invertase cloned from a leaf cDNA library detected a polypeptide in developing tubers but not in mature ones. However, expression of the protein did not correlate well with acid invertase activity during early tuber formation.  相似文献   

17.
Sucrose was supplied several hours after harvest to broccoli branchlets via the transpiration stream in order to increase the amount of sucrose available for respiration and to determine its influence on longevity at 22°C. Calculations based on solution uptake indicated that an 8% (w/v) sucrose solution supplied sufficient substrate for respiration, but the pattern of respiratory decline after harvest was not altered by supply of exogenous sucrose, and yellowing of floret sepals began after 2 days. However, when sucrose was supplied immediately after harvest, yellowing was delayed. Treatment with cytokinin (50 ppm 6-benzylaminopurine), to delay yellowing, had no effect on levels of sucrose in branchlets after 4.5 days, but retarded loss of chlorophyll. Floret tissues appear to sense the decline in sucrose after harvest, the result being induction of senescence as judged by yellowing. 6-benzylaminopurine may block the sensing mechanism.Abbreviations BAP 6-benzylaminopurine  相似文献   

18.
19.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号