首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0) and a high (g0) fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0). Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female) captive dholes (Cuon alpinus) and for 2 (1 male, 1 female) wild red fox (Vulpes vulpes). In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.  相似文献   

2.
In domestic dogs Canis familiaris, vocal traits have been investigated for barks and growls, and the relationship between individual body size and vocal traits investigated for growls, with less corresponding information for whines. In this study, we examined the frequency and temporal traits of whines of 20 adult companion dogs (9 males, 11 females), ranging in body mass from 3.5 to 70.0 kg and belonging to 16 breeds. Dog whines (26–71 per individual, 824 in total) were recorded in conditioned begging contexts modeled by dog owners. Whines had 3 independent fundamental frequencies: the low, the high and the ultra-high that occurred singly as monophonic calls or simultaneously as 2-voice biphonic or 3-voice polyphonic calls. From the smallest to largest dog, the upper frequency limit varied from 0.24 to 2.13 kHz for the low fundamental frequency, from 2.95 to 10.46 kHz for the high fundamental frequency and from 9.99 to 23.26 kHz for the ultra-high fundamental frequency. Within individuals, the low fundamental frequency was lower in monophonic than in biphonic whines, whereas the high fundamental frequency did not differ between those whine types. All frequency variables of the low, high, and ultra-high fundamental frequencies correlated negatively with dog body mass. For duration, no correlation with body mass was found. We discuss potential production mechanisms and sound sources for each fundamental frequency; point to the acoustic similarity between high-frequency dog whines and rodent ultrasonic calls and hypothesize that ultra-high fundamental frequencies function to allow private, “tete-a-tete” communication between members of social groups.  相似文献   

3.
The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect.In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect.Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.  相似文献   

4.
In captive adult Zambian mole-rats 14 different sounds (13 true vocalizations) have been recorded during different behavioural contexts. The sound analysis revealed that all sounds occurred in a low and middle frequency range with main energy below 10 kHz. The majority of calls contained components of 1.6–2 kHz, 0.63–0.8 kHz, and/or 5–6.3 kHz. The vocalization range thus matched well the hearing range as established in other studies. The frequency content of courtship calls in two species of Zambian Cryptomys was compared with that in naked mole-rats (Heterocephalus glaber) and blind mole-rats (Spalax ehrenbergi) as described in the literature. The frequency range of maximum sound energy is negatively correlated with the body weight and coincides with the frequencies of best hearing in the respective species. In general, the vocalization range in subterranean mammals is shifted towards low frequencies which are best propagated in underground burrows. Accepted: 16 September 1996  相似文献   

5.
Characteristics of acoustic waves accompanying the flight of noctuid moths (Noctuidae) were measured. The low-frequency part of the spectrum is formed of a series of up to 17 harmonics of the wingbeat frequency (30–50 Hz) with a general tendency toward the decrease in the spectral density and the increase in the sound frequency. The root-mean-square level of the sound pressure from flapping wings was found to be 70–78 dB SPL. Besides low-frequency components, the flight of moths was accompanied by short ultrasonic pulses, which appeared with every wingbeat. Most of the spectral energy was concentrated within a range of 7–150 kHz with the main peaks at 60–110 kHz. The short-term pulses were divided into two or more subpulses with different spectra. The high-frequency pulses were produced at two phases of the wingbeat cycle: during the pronation of the wings at the highest point and at the beginning of their upward movement from the lowest point. In most of the specimens tested, the peak amplitude of sounds varied from 55 to 65 dB SPL at a distance of 6 cm from the insect body. However, in nine noctuid species, no high-frequency acoustic components were recorded. In these experiments, the acoustic flow from the flying moth within a frequency range of 2 to 20 kHz did not exceed the self-noise level of the microphone amplifier (RMS 18 dB SPL). Probable mechanisms of the high frequency acoustic emission during flight, the effect of these sounds on the auditory sensitivity of moths, and the possibility of their self-revealing to insectivorous bats are discussed. In addition, spectral characteristics of the moth echolocation clicks were more precisely determined within the higher frequency range (>100 kHz).  相似文献   

6.
7.
P. HANSEN 《Bioacoustics.》2013,22(2):129-140
ABSTRACT

Coruros Spalacopus cyanus, social fossorial rodents from Chile, use a complex acoustic repertoire with eleven different true vocalisations and one mechanical sound in various behavioural contexts. The complex of contact calls is particularly well differentiated. Juvenile coruros produced six true vocalisations of which four were structurally identical to adult calls. One vocalisation had components of two adult sounds and one occurred only in juvenile animals. Certain calls from the adult repertoire were lacking. The frequencies of sounds of juveniles were considerably higher than those of adults, with many sounds reaching the ultrasonic range. Nevertheless, pure ultrasonic sounds were not recorded.

The frequencies of the analysed sounds of coruros extended from 0.17 to 20.33 kHz with dominant frequency components between 0.17 and 10 kHz. The acoustic properties of calls are suitable for transmission above and below ground, thus providing further indirect evidence that coruros are not strictly confined to an underground way of life. Indeed, the great variability of frequency ranges, with lower frequencies always being included, reflects a specialisation for communication in variable acoustic environments.

The most distinctive and unique vocalisation of coruros is the long duration musical trilling (lasting up to two minutes), which is a long-distance call emitted in alarm and arousal contexts. Recordings of this call from natural burrows in the field in Chile showed similar structural features to vocalisations from captive colonies in the laboratory.

Our findings provide a further example of matching physical properties of vocalisations to the acoustic conditions of the habitat. However, vocalisations in subterranean rodents consist almost exclusively of short-distance calls, the trilling of coruros being the notable exception. Since the selective pressure of the acoustic environment upon the evolution of short-distance vocalisations is probably minimal, we suggest that during their evolution, subterranean mammals have matched their vocalisations primarily to their hearing range and not directly to the acoustics underground. Hearing probably has been the primary target of natural selection, serving not only for communication but also for detection of predators (and, in carnivores, of prey).  相似文献   

8.
Biphonation (two independent fundamental frequencies in a call spectrum) represents one of the most widespread nonlinear phenomena in mammalian vocalizations. Recently, the structure of biphonations was described in detail; however, their functions are poorly understood. For the dhole (Cuon alpinus), biphonic calls represent a prominent feature of vocal activity. In this species, the biphonic call is composed of two frequency components – the high‐frequency squeak and the low‐frequency yap, which also occur alone as separate calls. In this study, we test the hypothesis that the complication of call structure, resulting from the joining of these calls into the biphonic yap–squeak may enhance the potential for individual recognition in the dhole. We randomly selected for analysis 30 high‐frequency squeaks, 30 low‐frequency yaps and 30 biphonic yap–squeaks per animal from five subadult captive dholes (450 calls in total). Discriminant analysis, based on 10 squeak parameter values, showed 80.7% correct assignment to a predicted individual. For 10 yap parameters, the correct assignment was only 44.7%. However, the analysis based on 10 parameters of the biphonic yap–squeak, selected as best contributing to discrimination, showed 96.7% correct assignment to a predicted individual. The results provide strong support for the hypothesis tested showing that the joining of two independent calls into a common vocalization may function to enhance individual recognition in the dhole.  相似文献   

9.
Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1–20 kHz band ranged from 131 to 168 dB re 1 μPa at 1 m, with differences in the means of different sound classes (whistles: 140.2±4.1 dB; variable calls: 146.6±6.6 dB; stereotyped calls: 152.6±5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10–16 km in sea state zero) and “short-range” sounds (5–9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.  相似文献   

10.
We present a new sound type recorded from bottlenose dolphins, Tursiops truncatus , in eastern Australian waters: low-frequency, narrow-band (LFN) harmonic sounds (defined as less than 2 kHz). Most of these sounds were of frequencies less than 1 kHz and were recorded commonly from socializing dolphins. These sounds differ significantly from narrow-band whistles, which are higher in frequency and longer in duration. The absence of these sounds in most studies of the acoustic behavior of bottlenose dolphins may reflect geographic differences in repertoires or result from insufficient sampling. Alternatively, these sounds may have been ignored where the focus of research was on other sound types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号