首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue-throated hummingbirds produce elaborate songs extending into the ultrasonic frequency range, up to 30 kHz. Ultrasonic song elements include harmonics and extensions of audible notes, non-harmonic components of audible syllables, and sounds produced at frequencies above 20 kHz without corresponding hearing range sound. To determine whether ultrasonic song elements function in intraspecific communication, we tested the hearing range of male and female blue-throated hummingbirds. We measured auditory thresholds for tone pips ranging from 1 kHz to 50 kHz using auditory brainstem responses. Neither male nor female blue-throated hummingbirds appear to be able to hear above 7 kHz. No auditory brainstem responses could be detected between 8 and 50 kHz at 90 dB. This high-frequency cutoff is well within the range reported for other species of birds. These results suggest that high-frequency song elements are not used in intraspecific communication. We propose that the restricted hummingbird hearing range may exemplify a phylogenetic constraint.  相似文献   

2.
The data are given of the analysis of the low-frequency EEG component (LF EEG--0.2--2.0 Hz) of 34 healthy subjects and 36 patients examined in dynamics in the acute period after operations: ablation of a tumour localized at the level of the diencephalon and the level of the brainstem. The LF EEGs were analyzed by a special program: auto- and crosscorrelation functions and power spectra were estimated. In the norm LF EEGs were characterized by mosaics, various frequencies and periodicity in various cortical areas, they appeared with interhemispheric asymmetry, depended on the EEG type--dominance or lack of the alpha-rhythm. In patients in the post-operative period the LF EEGs were changed; in favourable terminations, at first the period of oscillations and the coefficient of correlation increased, then they tended to normalization. In unfavourable terminations, with gross pathological foci in these areas, the LF EEGs acquired a synchronized character, with a higher frequency than in the norm.  相似文献   

3.
Heterozygosity–fitness correlations (HFCs) have been examined in a wide diversity of contexts, and the results are often used to infer the role of inbreeding in natural populations. Although population demography, reflected in population‐level genetic parameters such as allelic diversity or identity disequilibrium, is expected to play a role in the emergence and detectability of HFCs, direct comparisons of variation in HFCs across many populations of the same species, with different genetic histories, are rare. Here, we examined the relationship between individual microsatellite heterozygosity and a range of sexually selected traits in 660 male guppies from 22 natural populations in Trinidad. Similar to previous studies, observed HFCs were weak overall. However, variation in HFCs among populations was high for some traits (although these variances were not statistically different from zero). Population‐level genetic parameters, specifically genetic diversity levels (number of alleles, observed/expected heterozygosity) and measures of identity disequilibrium (g2 and heterozygosity–heterozygosity correlations), were not associated with variation in population‐level HFCs. This latter result indicates that these metrics do not necessarily provide a reliable predictor of HFC effect sizes across populations. Importantly, diversity and identity disequilibrium statistics were not correlated, providing empirical evidence that these metrics capture different essential characteristics of populations. A complex genetic architecture likely underpins multiple fitness traits, including those associated with male fitness, which may have reduced our ability to detect HFCs in guppy populations. Further advances in this field would benefit from additional research to determine the demographic contexts in which HFCs are most likely to occur.  相似文献   

4.
It is believed that the EEG is the most reliable method of evaluating brain function, but neither quantitative nor qualitative studies of the EEG have been carried out over the entire range of frequencies. Analysis of limited frequency bands of the EEG has not disclosed the whole of neuronal activity. The aim of this study is to clarify the upper limit of EEG frequency. Our EEG analytic system is composed of a high fiedlity preamplifier and signal processor with a frequency response within -3 dB below 20 kHz. Thirty adult cats were used for these experiments. The upper limit of the frequency varied in different structures: 6.9 +/- 0.8 kHz (+/- SEM) in motor cortex, 4.1 +/- 0.3 kHz in the hippocampus, 2.9 +/- 0.5 kHz in the amygdala, 9.3 +/- 0.6 kHz in the ventrolateral nucleus of the thalamus, and 9.9 +/- 0.5 kHz in the midbrain reticular formation. Three different types of amplitude spectra were characterized in bilogarithmic graphs. These types are named types f, f + L, and L corresponding to 1/f or Lorentzian fluctuation. In conclusion, the upper limit of frequency and the spectral types correspond to the neuronal specificity of different brain regions. Their physioanatomic significance is discussed.  相似文献   

5.
ABSTRACT. Analysis of the ultrasonic content of the calling songs of two tettigoniids, Decticus verrucivorus L. and Tettigonia cantans Fuessly, showed that the major secondary energy peaks in the ultrasonic range are only about 15–20 dB below the main audible frequency peaks. The song of the acridid, Locusta migratoria L., contains no appreciable secondary peaks at ultrasonic frequencies, Bifunctional acoustic-vibratory interneurones are present in the ventral nerve cord of all three species. They are divided into three categories, according to their response characteristics: VS (vibration and sound), S (sound) and V (vibration) neurones. All the unit-types capable of coding sound signals in the ventral cord (VS and S neurones) are sensitive to frequencies of up to 100 kHz, with one exception (S3). In tettigoniids, three of these unit-types are more sensitive at ultrasonic frequencies than they are at the audible frequencies of their conspecific songs. Among the vibratory neurones (V), one unit-type receives inhibitory inputs from ultrasonic acoustic primary receptors. The possible importance of ultrasonic perception in the natural environment is briefly discussed.  相似文献   

6.
Transverse electric and magnetic field (TEM) cells are often designed to subject samples to electromagnetic radiation of intrinsic impedance (E/H) that is the same as in free space, 377 omega. Earlier work has shown this value to be correct for the RF region above about 2 kHz. In this study, measurements of magnetic fields in the extremely low frequency regions and at DC indicate the E/H ratio to be around 300 omega for frequencies less than 2 kHz in cells of a particular design. This lower value indicates that care should be taken in estimating AC magnetic field intensities from electric field measurements in TEM cells at frequencies below 2 kHz.  相似文献   

7.
Summary Auditory brainstem responses (ABRs) were characterized at 37 °C in ground squirrels (Citellus lateralis) which were implanted with recording screws to record ABRs, and a thermistor to record brain temperature. After two weeks ground squirrels were reanesthetized and tone pips and clicks were delivered through a TDH-49 headphone.Recorded ABRs were found to vary in a predictable manner as a function of stimulus frequency and intensity. At intensities above 50 dB SPL, ABRs could be recorded over the range tested (2–32 kHz). An 8 kHz tone pip was the best frequency for recording ABRs at the lowest stimulus intensities. Latencies decreased as stimulus frequencies increased from 4 kHz to 32 kHz.  相似文献   

8.
Heterozygosity-fitness correlations (HFCs) are frequently used to examine the relationship between genetic diversity and fitness. Most studies have reported positive HFCs, although there is a strong bias towards investigating HFCs in genetically impoverished populations. We investigated HFCs in a large genetically diverse breeding population of Kentish plovers Charadrius alexandrinus in southern Turkey. This small shorebird exhibits highly variable mating and care systems, and it is becoming an ecological model species to understand breeding system evolution. Using 11 conserved and six anonymous microsatellite markers, we tested whether and how heterozygosity was associated with chick survival, tarsus and body mass growth controlling for nongenetic effects (chick sex, hatching date, length of biparental care and site quality) that influence survival and growth. There was no genome-wide effect of heterozygosity on fitness, and we did not find any significant effects of heterozygosity on growth rates. However, two of the 11 conserved markers displayed an association with offspring survival: one marker showed a positive HFC, whereas the other marker showed a negative HFC. Heterozygosity at three further conserved loci showed significant interaction with nongenetic variables. In contrast, heterozygosity based on anonymous microsatellite loci was not associated with fitness or growth. Markers that were correlated with chick survival were not more likely to be located in exons or introns than other markers that lacked this association.  相似文献   

9.
Summary The tonotopic organization of the inferior colliculus (IC) in two echolocating bats,Hipposideros speoris andMegaderma lyra, was studied by multiunit recordings.InHipposideros speoris frequencies below the range of the echolocation signals (i.e. below 120 kHz) are compressed into a dorsolateral cap about 400–600 m thick. Within this region, neuronal sheets of about 4–5 m thickness represent a 1 kHz-band.In contrast, the frequencies of the echolocation signals (120–140 kHz) are overrepresented and occupy the central and ventral parts of the IC (Fig. 3). In this region, neuronal sheets of about 80 m thickness represent a 1 kHz-band. The largest 1 kHz-slabs (400–600 m) represent frequencies of the pure tone components of the echolocation signals (130–140 kHz).The frequency of the pure tone echolocation component is specific for any given individual and always part of the overrepresented frequency range but did not necessarily coincide with the BF of the thickest isofrequency slab. Thus hipposiderid bats have an auditory fovea (Fig. 10).In the IC ofMegaderma lyra the complete range of audible frequencies, from a few kHz to 110 kHz, is represented in fairly equal proportions (Fig. 7). On the average, a neuronal sheet of 30 m thickness is dedicated to a 1 kHz-band, however, frequencies below 20 kHz, i.e. below the range of the echolocation signals, are overrepresented.Audiograms based on thresholds determined from multiunit recordings demonstrate the specific sensitivities of the two bat species. InHipposideros speoris the audiogram shows two sensitivity peaks, one in the nonecholocating frequency range (10–60 kHz) and one within the auditory fovea for echolocation (130–140 kHz).Megaderma lyra has extreme sensitivity between 15–20 kHz, with thresholds as low as –24 dB SPL, and a second sensitivity peak at 50 kHz (Fig. 8).InMegaderma lyra, as in common laboratory mammals, Q10dB-values of single units do not exceed 30, whereas inHipposideros speoris units with BFs within the auditory fovea reach Q10dB-values of up to 130.InMegaderma lyra, many single units and multiunit clusters with BFs below 30 kHz show upper thresholds of 40–50 dB SPL and respond most vigorously to sound intensities below 30 dB SPL (Fig. 9). Many of these units respond preferentially or exclusively to noise. These features are interpreted as adaptations to detection of prey-generated noises.The two different tonotopic arrangements (compare Figs. 3 and 7) in the ICs of the two species are correlated with their different foraging behaviours. It is suggested that pure tone echolocation and auditory foveae are primarily adaptations to echo clutter rejection for species foraging on the wing close to vegetation.Abbreviations BF Best frequency - CF constant frequency - FM frequency modulated - IC inferior colliculus - HS Hipposideros speoris  相似文献   

10.
The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.  相似文献   

11.
Two experiments, each with 24 normal right-handed adults, examined variability of the response of EEG alpha rhythms during repeated visual stimulations that were contingent on the occurrence of those rhythms. Within-trial variability of alpha durations and no-alpha (alpha blocking) durations were recorded from bipolar derivations along two bilateral posterior-anterior lines. Variability was significantly lower for: (1) the contingent EEG connected to the stimulus compared to the contralateral EEG, which was recorded simultaneously but was not connected to the stimulus; (2) occipitoparietal EEGs compared to parietocentral EEGs; (3) alpha durations compared to no-alpha durations. Differences in variability among the four EEG locations on the left or the right side were significant for contingent EEGs but not for contralateral nonconnected EEGs. The results were interpreted to be a demonstration that feedback EEG method can be applied to research on the functional topography of an EEG response to sensory stimuli in terms of the reduction of variability of the response that can be achieved with feedback.  相似文献   

12.
Pulsed Regime of the Diffusive Mode of a Barrier Discharge in Helium   总被引:1,自引:0,他引:1  
Periodic pulsations of the active current component are revealed experimentally in transversely homogeneous barrier discharges in helium at small values of the parameter Pd (below 500 torr mm) and moderate frequencies of the applied voltage (f < 100 kHz). The frequency of the current pulsations is higher than the frequency of the well-studied pulsations in a transversely inhomogeneous streamer barrier discharge in air by a factor of approximately 100. Numerical calculations show that the physical nature of the observed pulsations can be explained in terms of the negative differential resistance of the cathode fall region, which occupies essentially the entire interelectrode gap in each half-period of the applied voltage.  相似文献   

13.
1. A midline region of brain dorsal and anterior to the corpus callosum, presumably anterior cingulate cortex, has been explored for its role in the production of vocalization in the mustached bat, Pteronotus p. parnelli. 2. Vocalizations elicited by microstimulation were virtually indistinguishable from natural biosonar sounds. The spectral content, relative intensity of harmonic components, and durations of emitted pulses are comparable to spontaneous emissions. 3. The frequencies of elicited vocalizations were within the range typically used by the mustached bat during Doppler-shift compensation. The frequency of the second-harmonic constant-frequency component (CF2) covered the range from 57-62 kHz, but was most commonly emitted at frequencies of 59-61 kHz. 4. An increase in the frequency of vocalizations over a number of consecutive pulses towards a steady-state plateau is evident in both spontaneous vocalizations and emissions elicited by microstimulation just above threshold. Increasing the stimulus intensity caused the frequency of emissions to approach the steady state more rapidly. 5. The anterior cingulate cortex appears to be organized topographically for increasing frequency of elicited biosonar sounds along a rostrocaudal axis. The area from which biosonar emissions were elicited was overrepresented for a 2 kHz band of frequencies just below the bats' CF2 resting frequency. Audible vocalizations with a complex spectrum resembling social cries can also be elicited by microstimulation, but only in an area that is adjacent and posterior to the biosonar region. 6. Some examples of both elicited and spontaneous vocalizations contained a relative intensity pattern of the harmonic components which deviated from the typical pattern. This suggests that mustached bats are capable of actively altering the spectrum of their pulses to subserve different tasks in echolocation.  相似文献   

14.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

15.
Heterozygosity‐fitness correlations (HFCs) have been observed for several decades, but their causes are often elusive. Tests for identity disequilibrium (ID, correlated heterozygosity between loci) are commonly used to determine if inbreeding depression is a possible cause of HFCs. We used computer simulations to determine how often ID is detected when HFCs are caused by inbreeding depression. We also used ID in conjunction with HFCs to estimate the proportion of variation (r2) in fitness explained by the individual inbreeding coefficient (F). ID was not detected in a large proportion of populations with statistically significant HFCs (sample size = 120 individuals) unless the variance of F was high (σ2(F) ≥ 0.005) or many loci were used (100 microsatellites or 1000 SNPs). For example, with 25 microsatellites, ID was not detected in 49% of populations when HFCs were caused by six lethal equivalents and σ2(F) was typical of vertebrate populations (σ2(F) ≈ 0.002). Estimates of r2 between survival and F based on ID and HFCs were imprecise unless ID was strong and highly statistically significant (≈ 0.01). These results suggest that failing to detect ID in HFC studies should not be taken as evidence that inbreeding depression is absent. The number of markers necessary to simultaneously detect HFC and ID depends strongly on σ2(F). Thus the mating system and demography of populations, which influence σ2(F), should be considered when designing HFC studies. ID should be used in conjunction with HFCs to estimate the correlation between fitness and F, because HFCs alone reveal little about the strength of inbreeding depression.  相似文献   

16.
Spatial temporal and local EEG characteristics were studied in healthy subjects during inhalation of hypoxic oxygen-nitrogen gas mixture with 8 % content of oxygen. Analysis of spectra power density, coherence, phase shift, similarity of dominant frequencies in the EEGs of different derivations was performed separately for the EEG epochs with and without visually detected patterns of spatial synchrony of the EEG. Apart from this, a fact of dominance of the frequency in the EEG spectra of corresponding derivation was taken into account when estimating spectral parameters. Results of the study showed that, in general, under hypoxia, the EEG coherence in alpha- and delta-frequency range decreases as compared to the background level, in beta-range growth of this parameter is observed, in theta-range ambiguous changes occur: in the epochs with patterns of spatial synchrony--growth, in other epochs--lowering. Under hypoxia, also occurs growth of frontal and temporal EEGs' phase shift (corresponding to EEGs other derivations) in delta- and theta-range. In beta-range, on the contrary, average level of the phase shift decreases. It was revealed that taking into account the fact of dominance of frequency in the local EEG spectra is necessary for correct interpretation of the EEG spatial and temporal parameter analysis' results. A mathematical model of interaction between processes with different frequency characteristics is suggested, which explains some facts obtained in the study.  相似文献   

17.
Owing to the remarkable progress of molecular techniques, heterozygosity‐fitness correlations (HFCs) have become a popular tool to study the impact of inbreeding in natural populations. However, their underlying mechanisms are often hotly debated. Here we argue that these “debates” rely on verbal arguments with no basis in existing theory and inappropriate statistical testing, and that it is time to reconcile HFC with its historical and theoretical fundaments. We show that available data are quantitatively and qualitatively consistent with inbreeding‐based theory. HFC can be used to estimate the impact of inbreeding in populations, although such estimates are bound to be imprecise, especially when inbreeding is weak. Contrary to common belief, linkage disequilibrium is not an alternative to inbreeding, but rather comes with some forms of inbreeding, and is not restricted to closely linked loci. Finally, the contribution of local chromosomal effects to HFC, while predicted by inbreeding theory, is expected to be small, and has rarely if ever proven statistically significant using adequate tests. We provide guidelines to safely interpret and quantify HFCs, and present how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations.  相似文献   

18.
Prestimulus EEG power spectra from different cortical areas in frequency band 1-60 Hz were studied at a stage of formation of the cognitive set to facial expression. Diversity of individual power spectra of baseline EEGs, especially in gamma frequency band 41-60 Hz makes averaging individual spectra impossible. The authors pioneered in finding that, in prestimulus periods, EEG frequencies 41-60 Hz were of higher information value than frequencies 1-20 and 21-40 Hz. The highest power of the gamma frequencies was revealed in the frontal areas of the right hemisphere in subjects with a plastic set. In the group with a rigid set, gamma frequencies of high power prevailed in the posterotemporal and occipital areas of the left hemisphere.  相似文献   

19.
 The electroencephalogram (EEG) is a multiscaled signal consisting of several time-series components each with different dominant frequency ranges and different origins. Nonlinear measures of the EEG reflect the complexity of the overall EEG, but not of each component in it. The aim of this study is to examine effect of the sound and light (SL) stimulation on the complexity of each component of the EEG. We used independent component analysis to obtain independent components of the EEG. The first positive Lyapunov exponent (L1) was estimated as a nonlinear measure of complexity. Twelve subjects were administered photic and auditory stimuli with a frequency of 10 Hz, which corresponded to the alpha frequency of the EEG, by a sound and light entrainment device. We compared the L1 values of the EEGs and their independent components between baseline and after the SL stimulation. We detected that the L1 values of the EEG decreased after the SL stimulation in all channels except C3 and F4, indicating that the complexity of the EEG decreased. We showed that alpha components increased in proportion but decreased in complexity after the SL stimulation. The beta independent components were found to decrease in proportion and complexity. These results suggest that decreased complexity of the EEG after the SL stimulation may be principally caused by decreased complexity and increased proportion of the alpha independent components. We showed also that theta components increased in complexity after the SL stimulation. We propose that nonlinear dynamical analysis combined with independent component analysis may be helpful in understanding the temporal characteristics of the EEG, which cannot be detected by conventional linear or nonlinear methods. Received: 12 March 2001 / Accepted in revised form: 27 November 2001  相似文献   

20.
A Quantitative Analysis of the Sounds of Hector's Dolphin   总被引:1,自引:0,他引:1  
We developed an automatic, computer-based system in which digital signal processing techniques were used to measure 31 variables from digitized Hector's dolphin (Cephalorhynchus hectori) sounds. Principal component analyses of these data were used to investigate the relationships between sounds. Hector's dolphins make only a very few types of pulsed “clicks”, most of which are centred around 125 kHz. None of these had an average frequency of less than 82 kHz, and the only audible sounds were made up of high-frequency clicks repeated at such high rates that the repetition rate was audible to us as a tonal “cry” or “squeal”. In comparison to signal levels recorded from other cetaceans, all the Hector's dolphin signals were low-level; the maximum received sound pressure level was 163 dB (re 1μPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号