首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In angiosperm ovules and anthers, the hypodermal cell layer provides the progenitors of meiocytes. We have previously reported that the multiple archesporial cells1 (mac1) mutation identifies a gene that plays an important role in the switch of the hypodermal cells from the vegetative pathway to the meiotic (sporogenous) pathway in maize ovules. Here we report that the mac1 mutation alters the developmental fate of the hypodermal cells of the maize anther. In a normal anther a hypodermal cell divides periclinally with the inner cell giving rise to the sporogenous archesporial cells while the outer cell, together with adjacent cells, forms the primary parietal layer. The cells of the parietal layer then undergo two cycles of periclinal divisions to give rise to three wall layers. In mac1 anthers the primary parietal layer usually fails to divide periclinally so that the three wall layers do not form, while the archesporial cells divide excessively and most fail to form microsporocytes. The centrally located mutant microsporocytes are abnormal in appearance and in callose distribution and they fail to proceed through meiosis. These failures in development and function appear to reflect the failure of mac1 gene function in the hypodermal cells and their cellular progeny.  相似文献   

2.
3.
The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.  相似文献   

4.
5.
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.  相似文献   

6.
The biotrophic pathogen Ustilago maydis causes tumors by redirecting vegetative and floral development in maize (Zea mays L.). After fungal injection into immature tassels, tumors were found in all floral organs, with a progression of organ susceptibility that mirrors the sequential location of foci of cell division in developing spikelets. There is sharp demarcation between tumor-forming zones and areas with normal spikelet maturation and pollen shed; within and immediately adjacent to the tumor zone, developing anthers often emerge precociously and exhibit a range of developmental defects suggesting that U. maydis signals and host responses are restricted spatially. Male-sterile maize mutants with defects in anther cell division patterns and cell fate acquisition prior to meiosis formed normal adult leaf tumors, but failed to form anther tumors. Methyl jasmonate and brassinosteroid phenocopied these early-acting anther developmental mutants by generating sterile zones within tassels that never formed tumors. Although auxin, cytokinin, abscisic acid and gibberellin did not impede tassel development, the Dwarf8 mutant defective in gibberellin signaling lacked tassel tumors; the anther ear1 mutant reduced in gibberellin content formed normal tumors; and Knotted1, in which there is excessive growth of leaf tissue, formed much larger vegetative and tassel tumors. We propose the hypothesis that host growth potential and tissue identity modulate the ability of U. maydis to redirect differentiation and induce tumors.  相似文献   

7.
The tobacco stamen has been the object of many developmental studies, and the organ has more recently become a model for molecular genetic studies of anther differentiation. However, the spatial and temporal details of cellular differentiation of early anther development have never been thoroughly characterized. In the present study, the age of 15 tobacco flowers from plants grown under constant light and temperature was estimated using growth analysis. Prior to tissue fixation for light microscopy, moulds of stamen and anther primordia were made with a dental impression polymer so morphological and histological observations could be made on each tissue sample. Flower ages spanned an 8-d interval during which petal and stamen initiation occurred, and sporogenous cells reached the leptonema stage of meiosis. The initial development of the tetrasporangiate anther shape largely preceded periclinal division of archesporial initials. Anatomically, periclinal divisions in the hypodermal ∗∗∗(l2) layer were observed before archesporial initials began to divide. These data indicate differences in the cellular basis of tobacco anther development compared to earlier clonal analyses of Datura. The pattern of mitotic cell division associated with microsporangial development suggested modal peaks in division over time. The ability to estimate developmental time in the tobacco anther has implications for future studies directed at understanding mechanisms of anther evolution via heterochrony.  相似文献   

8.
The male sterile mutant, ms35 , of Arabidopsis thaliana was produced by X-irradiation of seeds. The mutant produces fertile pollen, but is male sterile because the anthers do not dehisce. Anther development in ms35 plants occurs as in wild-type Arabidopsis until shortly after microspores are released from meiotic tetrads. Thereafter, in the wild type, bands of lignified, cellulosic secondary wall thickenings are laid down around the cells of the anther endothecium. In contrast, wall thickenings are not formed in the endothecium of the ms35 mutant. Development of other lignified tissues, for example the vascular tissue of the stamen, occurs normally in ms35 plants. In mutant anthers, as pollen maturation is completed, the stomium is cleaved but the anther wall does not retract to release pollen. The block in anther dehiscence in ms35 plants is specifically correlated with the absence of endothecial wall thickenings. The ms35 mutation represents the first genetic evidence in support of the proposed role of the endothecium in anther dehiscence. The ms35 gene was mapped to the top arm of chromosome 3 ( hy2 -(4.17±2.31 cM)- ms35 -(32.14±5.45 cM)- gl1 ).  相似文献   

9.
Hao YJ  Wang DH  Peng YB  Bai SL  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2003,217(6):888-895
To investigate the regulatory mechanisms of sex expression in cucumber, morphological observations and biochemical analyses were carried out on inappropriate stamen development of female flowers of cucumber. It was found that developmental arrest of the inappropriate stamen mainly occurs at the anther primordium. This arrest is closely correlated with DNA damage, as detected by TUNEL assay, and might result from anther-specific DNase activation. It was also found that the DNA damage does not lead to cell degeneration, although chromatin condensation is observed in the anther primordia.Abbreviations DAPI 4,6-diamidine-2-phenylindole dihydrochloride - MTT 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide - PCD programmed cell death - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

10.
Uchida W  Matsunaga S  Sugiyama R  Kazama Y  Kawano S 《Planta》2003,218(2):240-248
When inoculated with the dimorphic smut fungus Microbotryum violaceum (Pers.) G. Deml and Oberwinkler, the female flower of the dioecious plant Silene latifolia (Miller) E.H.L. Krause develops anther-like structures filled with spores instead of pollen grains. Using natural scanning electron microscopy, Nomarski interference microscopy, and fluorescence microscopy, we investigated the morphological modifications of the host plant resulting from this parasitism and the localization of smut hyphae in the flower bud. Flowers of infected plants lasted significantly longer than those of healthy plants, probably because the infection strengthened floral organs, such as the flower base and the anther filaments. Smut hyphae were observed throughout all organs of the young flower buds of infected plants, including sepals, petals, stamens, and pistil primordia. In healthy female flowers, anthers initiated sporogenous cell formation, but lacked parietal cell layers. By contrast, the parietal cell layers of infected female flowers differentiated into tapetal tissue, middle cell layers, and endothecial layers, as in the anthers of healthy male flowers. Smut spore formation in the infected anther was initiated in intercellular regions between the sporogenous cells, resulting in degeneration of premature sporogenous cells, tapetal tissue, and middle cell layers. The development of the endothecial layers and epidermis in the infected anther were morphologically normal.Abbreviations DAPI 4,6-diamidino-2-phenylidole - i infected - PMC pollen mother cell  相似文献   

11.
The branches of successive orders of the inflorescence of Panicum miliaceum L. arise in the axils of the bracts of the branches of next lower order. Their initiation is evidenced by periclinal division of sub-hypodermal cells. The primordia of branches arise in initiation like a normal axillary bud. The floral histogenesis of Panicum miliaceum L. is similar to that of Triticum. Primordia of the spikelet, flower and stamen are initiated by the activity of the periclinal division of the sub-hypodermal cell or cells. Sometimes, periclinal divisions also occur in a few hypodermal cells during these primordial developments; such divisions are more frequent in the formation of the flower and stamen primordia than in the formation of the spikelet primordia. The periclinal division of the dermatogen ceils never occurs in the formation of these organs. Glumes and lemma are initiated in the periclinal division of the dermatogen and hypodermal cell or cells. The primordia of the palea, lodicule and carpel are initiated by means of the periclinal division in the dermatogen cell or cells. In the formation of the palea and carpel, periclinal divisions also occur in hypodermat cells, but their derivatives are protruding into the bases of the primordia and do not constitute the tissues of the palea and carpel. The growing point of the flower axis develops into the ovule. The integuments arise from the periclinal division of dermatogen cells. The periclinal division of dermatogen cells is characteristic of the initiation of the phylloid organs in the Gramineae.  相似文献   

12.
At the early stage of rice flower development, the lemma, palea, stamen and pistil primordia are first formed, as shown by the cover picture taken under an electron microscope. The stamen primordia further develop into mature anthers, with viable pollen inside. In this issue, Guo and Liu (pp. 967–978) summarize recent advances in molecular genetic studies of rice anther development and male fertility/sterility control. Research in this field has significant implications in rice genetic improvement.  相似文献   

13.
孝顺竹(Bambusa multiplex)大孢子发生与雌配子体发育研究   总被引:2,自引:0,他引:2  
为了解孝顺竹(Bambusa multiplex)的大孢子及雌配子体的发育过程,利用扫描电镜对孝顺竹的雌蕊形态以及大孢子和雌配子体的发育进行了观察。结果表明,孝顺竹雌蕊单子房,1室,双珠被,薄珠心;大孢子母细胞是由1个雌性孢原细胞直接发育而成,大孢子四分体为线性,位于珠孔端的1个大孢子分化成为功能大孢子,然后由功能大孢子依次经历二核、四核、最终形成1卵细胞2助细胞2极核3反足细胞的成熟胚囊。此外,孝顺竹为雌雄同熟类型,根据雌、雄蕊发育的对应关系,从雄蕊形态可估测雌配子体发育阶段。有少数雌蕊出现败育现象,可能是孝顺竹结实率低的原因之一。  相似文献   

14.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

15.
16.
17.
一个新的水稻花器官数目突变体fon(t)的鉴定及分析   总被引:3,自引:0,他引:3  
水稻花器官数目突变体 fon(t)是在单倍体与二倍体的杂交 F2代发现的,经过多代种植,已稳定遗传。以 fon(t)为父本,以日本晴、93?11 和 R527 为母本配制杂交组合进行遗传分析,根据 F2代表型及χ2测验结果表明,该突变体的性状是由单隐性基因控制的。因为对花器官数目突变体曾有报道如 fon1、fon2 和 fon3,所以该突变体暂定名为 fon(t)。该突变体导致内外稃开裂,花器官外露;雄蕊和雌蕊的数目均增多,雄蕊一般 6~9 枚,雌蕊 1~2 枚;浆片同源转化为类内稃的结构;个别的花器官中还出现花丝上伸出类柱头的结构,浆片上部同源转化为类柱头或者类雄蕊的结构。研究结果表明,fon(t)基因可能影响水稻第三、四轮花器官的数目以及第二轮浆片的发育。  相似文献   

18.
Floral organ identity B class genes are generally recognized as being required for development of petals and stamens in angiosperm flowers. Spinach flowers are distinguished in their complete absence of petals in both sexes, and the absence of a developed stamen whorl in female flowers. As such, we hypothesized that differential expression of B class floral identity genes is integral to the sexual dimorphism in spinach flowers. We isolated two spinach orthologs of Arabidopsis B class genes by 3 and 5 RACE. Homology assignments were tested by comparisons of percent amino acid identities, searches for diagnostic consensus amino acid residues, conserved motifs, and phylogenetic groupings. In situ hybridization studies demonstrate that both spinach B class genes are expressed throughout the male floral meristem in early stages, and continue to be expressed in sepal primordia in reduced amounts at later stages of development. They are also highly expressed in the third whorl primordia when they arise and continue to be expressed in these tissues through the development of mature anthers. In contrast, neither gene can be detected in any stage in female flowers by in situ analyses, although northern blot experiments indicate low levels of SpAP3 within the inflorescence. The early, strong expressions of both B class floral identity genes in male floral primordia and their absence in female flowers demonstrate that B class gene expression precedes the origination of third whorl primordia (stamen) in males and is associated with the establishment of sexual floral dimorphism as it initiates in the first (sepal) whorl. These observations suggest that regulation of B class floral identity genes has a role in the development of sexual dimorphism and dioecy in spinach rather than being a secondary result of organ abortion.Electronic Supplementary Material Supplementary material is available for this article at Edited by G. Jürgens  相似文献   

19.
The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the function of the DELLA proteins, a family of nuclear growth repressors. However, it was not clear that the DELLA proteins are involved in the GA-regulation of stamen and anther development. We show that GA regulates cell elongation rather than cell division during Arabidopsis stamen filament elongation. In addition, GA regulates the cellular developmental pathway of anthers leading from microspore to mature pollen grain. Genetic analysis shows that the Arabidopsis DELLA proteins RGA and RGL2 jointly repress petal, stamen and anther development in GA-deficient plants, and that this function is enhanced by RGL1 activity. GA thus promotes Arabidopsis petal, stamen and anther development by opposing the function of the DELLA proteins RGA, RGL1 and RGL2.  相似文献   

20.
We have characterized a new male-sterile mutant in Arabidopsis that exhibits conditional sterility but has restored fertility when drought-stressed. This mutant, multiple impairments in male reproduction 1 (mimr1), shows pleiotropic defects in both vegetative and reproductive development. Examination with dissecting and scanning electron microscopes revealed that its pollen grains are not effectively released from the anther locule after dehiscence, and anther differentiation is defective. Growth of the style and stamen filaments are also abnormal. Histological analysis demonstrated that these phenomena are due not only to a noticeably reduced extension of the stamen but also greater elongation of the pistil. Genetic analysis indicated that mimr1 is a single locus recessive nuclear mutant. The mutation can be mapped to a locus strongly linked to a 1200-kb region on Chromosome 3. Meta-analysis of expression patterning presented several candidate genes in that region. No mutants with similar phenotypes have previously been reported, suggesting that mimr1 is a novel male-sterile locus. Characterization of MIMR1 will provide further insights into the molecular basis for the development of plant reproductive organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号