首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Iron is essential for numerous cellular processes. For diagnostic purposes iron-related parameters in patients are assessed by clinical chemical blood analysis including the analysis of ferritin, transferrin and iron levels. Here, we retrospectively evaluated the use of these parameters in the phenotype-driven Munich N-ethyl-N-nitrosourea mouse mutagenesis project for the generation of novel animal models for human diseases. The clinical chemical blood analysis was carried out on more than 10,700 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma levels of iron-related plasma parameters. We identified animals consistently exhibiting altered plasma ferritin or transferrin values. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of three mutant lines with increased plasma ferritin levels. For two of these lines the causative mutations were identified in the Fth1gene and the Ireb2 gene, respectively. Thus, novel mouse models for the functional analysis of iron homeostasis were established by a phenotype-driven screen for mutant mice.  相似文献   

2.
Increased oxygen (O(2)) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F(2) populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci.  相似文献   

3.
Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.  相似文献   

4.
Transgenic mice expressing human ABCG5 (G5) and ABCG8 (G8) have decreased fractional absorption and increased biliary secretion of cholesterol, but their plasma cholesterol levels are unchanged (males) or modestly reduced (females). To determine whether increased expression of G5 and G8 can ameliorate hypercholesterolemia in mice lacking LDL receptors (LDLRs), we examined the effects of G5G8 transgene expression on cholesterol metabolism and atherosclerosis in Ldlr-/- mice. In chow-fed Ldlr-/- mice, the G5G8 transgene reduced fractional absorption of dietary cholesterol by 50% and increased biliary cholesterol levels by 60% but did not affect plasma cholesterol levels. On a Western diet (21% fat, 0.2% cholesterol), G5G8Tg; Ldlr-/- mice had a 30% reduction in the level of hepatic cholesterol and 45% lower plasma cholesterol levels than the Ldlr-/- mice. After 6 months on the Western diet, the atherosclerotic lesion area in the aortic root and arch was approximately 70% lower in the G5G8Tg;Ldlr-/- than in the Ldlr-/- mice and was correlated with the plasma cholesterol levels. These results demonstrate that increased expression of G5 and G8 attenuates diet-induced hypercholesterolemia in Ldlr-/- mice, resulting in a significant reduction in plasma levels of cholesterol and aortic atherosclerotic lesion area.  相似文献   

5.
We have developed a simple method for producing embryonic stem (ES) cell lines whereby both alleles have been inactivated by homologous recombination and which requires a single targeting construct. Four different ES cell lines were created that were heterozygous for genes encoding two guanine nucleotide-binding protein subunits, alpha i2 and alpha i3, T-cell receptor alpha, and beta-cardiac myosin heavy chain. When these heterozygous cells were grown in high concentrations of G418, many of the surviving cells were homozygous for the targeted allele and contained two copies of the G418 resistance gene. This scheme provides an easy method for obtaining homozygous mutationally altered cells, i.e., double knockouts, and should be generally applicable to other genes and to cell lines other than ES cells. This method should also enable the production of cell lines in which more than one gene have had both alleles disrupted. These mutant cells should provide useful tools for defining the role of particular genes in cell culture.  相似文献   

6.
Mice that lack apolipoprotein E (apoE) display a severe hypercholesterolemia, caused by the accumulation of apolipoprotein B-48 (apoB-48)-carrying remnants of chylomicrons and very-low-density lipoproteins in the plasma. Statins are potent inhibitors of cholesterol synthesis that, when administered to mice lacking apoE, cause paradoxical further increases in plasma cholesterol levels. In the present study, we examined the mechanisms responsible for this phenomenon. ApoE-deficient mice fed a chow diet containing simvastatin developed, as anticipated, an enhanced increase in plasma cholesterol and a decrease in plasma triglycerides. Fractionation of the plasma lipoproteins by FPLC revealed that the lipid changes were confined to the lipoprotein remnants. Western blot analysis of the remnants from the untreated and simvastatin-treated mice showed no differences in their apoB-48 content, indicating that both groups of animals accumulated similar numbers of remnant particles in the plasma. Following the injection of Triton WR-1339, the simvastatin-treated mice accumulated in the plasma significantly more cholesterol and significantly less triglycerides than the untreated animals. These results indicate that the enhanced hypercholesterolemia observed in apoE-deficient mice treated with simvastatin is not the result of an increased number of remnant particles in circulation but is caused by synthesis and secretion into the plasma of lipoproteins that are enriched in cholesterol and depleted of triglycerides.  相似文献   

7.
8.
We present the strain distribution patterns (SDPs) of 118 SSLP markers and three pigmentation genes that have been characterized in 27 strains from the LSXSS RI series. This coarse map provides a resource for linkage studies of phenotypes that are heritable in the LSXSS RI series. The LSXSS recombinant inbred (RI) strains were derived from the Long-Sleep (LS) and Short-Sleep (SS) selected lines of mice that were selected for differential sensitivity to ethanol but are also differentially sensitive to a variety of other alcohols, barbiturates, sedative hypnotics, and general anesthetics. Since the parents were not inbred, two atypical factors are present in these SDPs. First, more than two alleles are frequently found in these RIs, and second, some alleles can be uniquely associated with one or the other parent while other alleles may be found in both parental lines. To validate the markers found in the parental line, we genotyped all parental mice from one generation of both the LS and SS lines, thus leading to a set of marker SDPs that are useful for further phenotypic association and identification of provisional QTLs. Received: 15 November 1995 / Accepted: 6 February 1996  相似文献   

9.
Several acridine derivatives have been screened for their therapeutic potential and some are already established as antiprotozoan, antibacterial or anticancer agents. However, phenyl derivative at C-9 position of acridine had remained unexplored for their biological activity so far. In this report, we present our findings with 9-phenyl acridine (ACPH) as an anticancer agent. Both A375 and HeLa, two human cancer cell lines, were more sensitive to ACPH than normal cells namely human lymphocytes and also Chinese hamster V79 cells. ACPH also led to regression of tumour volume in mice. In A375 cells, we have shown that it caused DNA damage and blocked cell cycle progression at G(2)-M phase. Treatment with ACPH led to lowering of mitochondrial potential, upregulation of bax, release of cytochrome C and activation of caspase 3. As a new agent showing lower toxicity to normal cells and greater sensitivity towards cancerous cell line, ACPH shows promise as an effective cancer chemotherapeutic agent. ACPH treatment resulted in apoptotic death of cells through mitochondria-mediated caspase-dependent pathway.  相似文献   

10.
Expression of the CD45 Ag in hemopoietic cells is essential for normal development and function of lymphocytes, and both mice and humans lacking expression exhibit SCID. Human genetic variants of CD45, the exon 4 C77G and exon 6 A138G alleles, which alter the pattern of CD45 isoform expression, are associated with autoimmune and infectious diseases. We constructed transgenic mice expressing either an altered level or combination of CD45 isoforms. We show that the total level of CD45 expressed is crucial for normal TCR signaling, lymphocyte proliferation, and cytokine production. Most importantly, transgenic lines with a normal level, but altered combinations of CD45 isoforms, CD45(RABC/+) and CD45(RO/+) mice, which mimic variant CD45 expression in C77G and A138G humans, show more rapid onset and increased severity of experimental autoimmune encephalomyelitis. CD45(RO/+) cells produce more TNF-alpha and IFN-gamma. Thus, for the first time, we have shown experimentally that it is the combination of CD45 isoforms that affects immune function and disease.  相似文献   

11.
Effective chemotherapy for pancreatic cancer is urgently needed. The aim of this study was to compare the anti-proliferative activity on pancreatic cancer cell lines of the vitamin D(3) analog, 22-oxa-1,25-dihydroxyvitamin D(3), maxacalcitol, with that of 1,25-dihydroxyvitamin D(3), calcitriol, with analysis of vitamin D receptor status and the G(1)-phase cell cycle-regulating factors. Antiproliferative effects of both agents were compared using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and by measuring the tumor size of xenografts inoculated into athymic mice. Scatchard analysis of vitamin D receptor contents, and mutational analysis of receptor complementary DNA were performed. Levels of expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, p21 and p27, were analysed by western blotting. In vitro, maxacalcitol and calcitriol markedly inhibited the proliferation and caused a G(1) phase cell cycle arrest with the appearance of numerous domes. In vivo, maxacalcitol inhibited the growth of BxPC-3 xenografts more significantly than calcitriol, without inducing hypercalcemia. Responsive cells had abundant functional vitamin D receptors. However, Hs 766T, showing no response to either agent, had the second highest receptor contents with no abnormalities in its primary structure deduced by receptor complementary DNA. In the responsive cells, p21 and p27 were markedly up-regulated after 24h of treatment with both agents. In non-responsive cells, no such changes were observed. In conclusion, maxacalcitol and calcitriol up-regulate p21 and p27 as an early event, which in turn could block the G(1)/S transition and induce growth inhibition in responsive cells, and maxacalcitol may provide a more useful tool for the chemotherapy of pancreatic cancer than calcitriol because of its low toxicity.  相似文献   

12.
Numerous studies have implicated either the presence or absence of CD36 in the development of hypertension. In addition, hypercholesterolemia is associated with the loss of nitric oxide-induced vasodilation and the subsequent increase in blood pressure. In the current study, we tested the hypothesis that diet-induced hypercholesterolemia promotes the disruption of agonist-stimulated nitric oxide generation and vasodilation in a CD36-dependent manner. To test this, C57BL/6, apoE null, CD36 null, and apoE/CD36 null mice were maintained on chow or high fat diets. In contrast to apoE null mice fed a chow diet, apoE null mice fed a high fat diet did not respond to acetylcholine with a decrease in blood pressure. Caveolae isolated from in vivo vessels did not contain endothelial nitric-oxide synthase and were depleted of cholesterol. Age-matched apoE/CD36 null mice fed a chow or high fat diet responded to acetylcholine with a decrease in blood pressure. The mechanism underlying the vascular dysfunction was reversible because vessels isolated from apoE null high fat-fed mice regained responsiveness to acetylcholine when incubated with plasma obtained from chow-fed mice. Further analysis demonstrated that the plasma low density lipoprotein fraction was responsible for depleting caveolae of cholesterol, removing endothelial nitric-oxide synthase from caveolae, and preventing nitric oxide production. In addition, the pharmacological removal of caveola cholesterol with cyclodextrin mimicked the effects caused by the low density lipoprotein fraction. We conclude that the ablation of CD36 prevented the negative impact of hypercholesterolemia on agonist-stimulated nitric oxide-mediated vasodilation in apoE null mice. These studies provide a direct link between CD36 and the early events that underlie hypercholesterolemia-mediated hypertension and mechanistic linkages between CD36 function, nitric-oxide synthase activation, caveolae integrity, and blood pressure regulation.  相似文献   

13.

Background

Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU).

Methodology/Principal Findings

ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1.

Conclusions/Significance

In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.  相似文献   

14.
Liu K  Goodman M  Muse S  Smith JS  Buckler E  Doebley J 《Genetics》2003,165(4):2117-2128
Two hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A "phylogenetic" tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize.  相似文献   

15.
Akacid medical formulation (AMF) is an oligoguanidine that exerts biocidal activity against airborne and surface microorganisms including bacteria, viruses, fungi, and molds, while showing relatively low toxicity to humans. We have previously shown that AMF exerts antiproliferative effects on a variety of solid tumor cell lines. In this study we raised the question whether AMF could also substantially inhibit cell growth or induce apoptosis in cell lines derived from hematologic malignancies such as leukemia or lymphoma. We found that AMF has antiproliferative effects on various hematologic cell lines derived from human leukemia and lymphoma. Additionally, we show that AMF induces apoptosis in leukemia cell lines not only via the extrinsic and intrinsic pathway, but also in a caspase-independent manner. This effect was found also in G0-arrested cells. Finally, in our animal experiments utilizing male nu/nu Balb/c mice we found a significant growth retardation, which was immunohistochemically associated with a significantly lower number of KI67-positive cells and caspase-3 induction in AMF-treated mice.  相似文献   

16.
Polymorphisms of the vitamin D receptor gene (VDR) have been shown to be associated with several complex diseases, including osteoporosis, but the mechanisms are unknown and study results have been inconsistent. We therefore determined sequence variation across the major relevant parts of VDR, including construction of linkage disequilibrium blocks and identification of haplotype alleles. We analyzed 15 haplotype-tagging SNPs in relation to 937 clinical fractures recorded in 6,148 elderly whites over a follow-up period of 7.4 years. Haplotype alleles of the 5' 1a/1e, 1b promoter region and of the 3' untranslated region (UTR) were strongly associated with increased fracture risk. For the 16% of subjects who had risk genotypes at both regions, their risk increased 48% for clinical fractures (P = .0002), independent of age, sex, height, weight, and bone mineral density. The population-attributable risk varied between 1% and 12% for each block and was 4% for the combined VDR risk genotypes. Functional analysis of the variants demonstrated 53% lower expression of a reporter construct with the 1e/1a promoter risk haplotype (P = 5 x 10(-7)) in two cell lines and 15% lower mRNA level of VDR expression constructs carrying 3'-UTR risk haplotype 1 in five cell lines (P = 2 x 10(-6)). In a further analysis, we showed 30% increased mRNA decay in an osteoblast cell line for the construct carrying the 3'-UTR risk haplotype (P = .02). This comprehensive candidate-gene analysis demonstrates that the risk allele of multiple VDR polymorphisms results in lower VDR mRNA levels. This could impact the vitamin D signaling efficiency and might contribute to the increased fracture risk we observed for these risk haplotype alleles.  相似文献   

17.
Spinal muscular atrophy (SMA) is caused by low survival motor neuron (SMN) levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2) gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo) and Smn(2B-Neo). These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.  相似文献   

18.
A central hypothesis in the study of Alzheimer’s disease (AD) is the accumulation and aggregation of β-amyloid peptide (Aβ). Recent epidemiological studies suggest that patients with elevated cholesterol and decreased estrogen levels are more susceptible to AD through Aβ accumulation. To test the above hypothesis, we used ovariectomized with diet-induced hypercholesterolemia (OVX) and hypercholesterolemia (HCL) diet alone mouse models. HPLC analysis reveals the presence of beta amyloid in the OVX and HCL mice brain. Congo red staining analysis revealed the extent of amyloid deposition in OVX and hypercholesterolemia mice brain. Overall, Aβ levels were higher in OVX mice than in HCL. Secondly, estrogen receptors α (ERα) were assessed by immunohistochemistry and this suggested that there was a decreased expression of ER α in OVX animals when compared to hypercholesterolemic animals. Aβ was quantified by Western blot and ELISA analysis. Overall, Aβ levels were higher in OVX mice than in HCL mice. Our experimental results suggested that OVX animals were more susceptible to AD with significant increase in Aβ peptide.  相似文献   

19.
A highly polymorphic AT rich repeat exists in the 3' flanking region of the IL-6 gene. Using Genescan analysis we studied this region of the IL-6 gene in 55 normals and 95 patients with rheumatoid arthritis (RA). The influence of alleles on need for early major joint surgery in RA patients was assessed. We identified nine alleles of which, G8, G7 and G4 were the most common (37% vs 36% vs 13%). RA surgery patients had an increase in the frequency of G7 compared to non-surgery and control populations (46% vs 27% vs 34%, respectively) and a decrease in G8 (22% vs 46% vs 43%, respectively). RA patients homozygous for G8 had a lower ESR than those homozygous for G7 (23 mm/h vs 36 mm/h) although this was not significant. We have determined these alleles and their distribution in a normal and RA population. Initial findings suggest G8 may be associated with lower erythrocyte sedimentation rate (ESR) and less severe RA. Although trends in allele distribution were observed, further studies in larger cohorts are required.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号