首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a cosmopolitan pest species that can feed on more than 1000 host plant species. Historically, organophosphate (OP) and carbamate insecticides have been used to control this extremely polyphagous pest. However, its ability to develop acaricide resistance rapidly has led to failure in control. Mutations in acetylcholinesterase gene (ace), the target-site of OP and carbamate insecticides, have been reported to be one of the major mechanisms underlying this developing resistance. In this study, mutations previously associated with resistance (G119S, A201S, T280A, G328A, F331W/Y) in ace have been screened in 37 T. urticae populations collected across Turkey. All mutations were found in various populations, except G119S. Almost all populations had F331W/Y mutation (being fixed in 32 populations), whereas only two populations harboured A201S mutation, but not fixed. On the other hand, more than half of the populations contained T280A and G328A mutations. In addition, the presence of same haplotypes in populations originating from distinct geographic locations and a wide variety of ace haplotypes might indicate multiple origins of F331W and F331Y mutations; however, this needs further investigation. The results of area-wide screening showed that ace mutations are widely distributed among T. urticae populations. Therefore, the use of this group of insecticides should be limited or only rotational use might be regarded as a resistance management tool due to its different mode of action from other main acaricide groups in T. urticae control across Turkey.

  相似文献   

2.
Studies were conducted in 2007 and 2008 in Hawaii, USA to quantify attraction and feeding responses resulting in mortality of the male oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to a novel male annihilation treatment (MAT) formulation consisting of specialized pheromone and lure application technology (SPLAT) in combination with methyl eugenol (ME) and spinosad (=SPLAT‐MAT‐ME with spinosad) in comparison with Min‐U‐Gel‐ME with naled (Dibrom). Our approach involved a novel behavioral methodology for evaluation of slow‐acting reduced‐risk insecticides. Methyl eugenol treatments were weathered for 1, 2, 4, and 8 weeks in California, USA, and shipped to Hawaii for bioassays. In field tests involving bucket traps to attract and capture wild males, and in toxicity studies conducted in 1 m3 cages using released males of controlled ages, SPLAT‐MAT‐ME with spinosad performed similar to or outperformed the standard formulation of Min‐U‐Gel‐ME with naled for material aged for up to 8 weeks in the 2008 tests. In laboratory feeding tests in which individual males were exposed for 5 min to the different ME treatments, mortality induced by SPLAT‐MAT‐ME with spinosad recorded at 24 h did not differ from that caused by Min‐U‐Gel ME with naled at 1, 2, and 4 weeks. Spinosad has low contact toxicity, and when mixed with SPLAT offers a reduced‐risk alternative for control of B. dorsalis, without many of the negative effects to humans and non‐targets of broad‐spectrum contact poisons such as naled. Our results indicate that SPLAT‐MAT‐ME with spinosad offers potential for control of males in an area‐wide integrated pest management (IPM) system without the need for conventional organophosphates.  相似文献   

3.
The effects of spinosad bait and various insecticides, the presence of sugar in insecticides, and diet on feeding responses and mortality in western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae), were determined. Numbers of feeding events on insecticides with sugar were greater than on insecticides alone, but there was only a small effect of diet on feeding responses to insecticides with sugar. Feeding durations on imidacloprid, thiamethoxam and acetamiprid with sugar were shorter than on sugar water and spinosad bait, as the neonicotinoids paralysed flies quickly. Flies that fed on sugar only (nitrogen‐starved) suffered higher mortalities when exposed to spinosad, thiamethoxam and azinphos‐methyl than to imidacloprid, acetamiprid and indoxacarb, and mortality in between these two groups of treatments when exposed to spinosad bait. Mortalities were greater when sugar was added to insecticides, and were higher in nitrogen‐starved than fully‐fed (yeast extract + sugar fed) flies. Flies that fed once on thiamethoxam were killed more quickly than those that fed once on spinosad bait and spinosad. Results suggest that thiamethoxam is comparable to spinosad in its effects on mortality, and that using it with sugar in bait may also have similar results as using spinosad bait or spinosad. One benefit of using thiamethoxam with sugar may be that it kills flies more quickly, before they can oviposit, than spinosad bait, although whether a fly will feed on it may depend on how much sugar or nitrogenous food it has eaten.  相似文献   

4.
Trapping trials were conducted in two locations on the island of Hawaii with plastic‐matrix formulations of methyl eugenol (ME) (1‐2‐dimethoxy‐4‐allylbenzene) and cuelure (CL) [4‐(p‐acetoxyphenyl)‐2‐butanone] in traps with or without a toxicant (2, 2‐dichlorovinyl dimethyl phosphate, DDVP) against wild fly populations of oriental fruit fly, Bactrocera dorsalis (Hendel) and melon fly, Bactrocera cucurbitae (Coquillett) respectively. Both 5 g disks and 10 g cones of ME and 2 g plugs of CL caught flies for >9 months which varied relative to the population fluctuations. In all of these trials a one‐way entrance design trap caught more flies than the toxicant‐baited trap. The similar‐sized entrance holes (0.70 cm) of the latter may have slowed the dispersal of the toxicant vapour, thus causing flies to be repelled or killed outside the entrance to the trap when DDVP vapour was evolving at a maximum rate. The effect decreased as the toxicant aged. One‐way entrance traps are appropriate where toxicant traps are not allowed (e.g. organic farms), present a health hazard (e.g. yards with children), or would need to be replaced more frequently than lures. The results of these studies are discussed in relation to areawide fruit fly suppression programs where large populations of these flies are persistent, as well as to detection programs in areas where fruit flies have not established.  相似文献   

5.
The horn fly, Haematobia irritans, is a serious pest of cattle in North America. The control of horn flies has primarily relied on insecticides. However, the heavy use of insecticides has led to the development of insecticide resistance in horn flies. Novel methods to control horn flies are greatly needed. Transgenic technology is an effective tool to genetically modify insects and may lead to novel methods of pest control based on genomic approaches. Here we report a piggyBac‐mediated transformation of the horn fly via electroporation. Transformation with a DsRed fluorescent marker protein coding region was verified by PCR analysis of individual fly bodies and pupal cases and sequencing of PCR products. However, Southern blot analysis failed to indicate the DsRed gene was integrated into the horn fly genome. Thus, the electroporation protocol may have caused the DsRed gene to be integrated into bacterial symbionts of the horn fly.  相似文献   

6.
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a pest of fruit and vegetable production that has become established in 42 countries in Africa after its first detection in 2003 in Kenya. It is likely that this rapid expansion is partly due to the reported strong capacity for flight by the pest. This study investigated the tethered flight performance of B. dorsalis over a range of constant temperatures in relation to sex and age. Tethered flight of unmated B. dorsalis aged 3, 10 and 21 days was recorded for 1 h using a computerized flight mill at temperatures of 12, 16, 20, 24, 28, 32 and 36 °C. Variations in fly morphology were observed as they aged. Body mass and wing loading increased with age, whereas wing length and wing area reduced as flies aged. Females had slightly larger wings than males but were not significantly heavier. The longest total distance flown by B. dorsalis in 1 h was 1559.58 m. Frequent short, fast flights were recorded at 12 and 36 °C, but long-distance flight was optimal between 20 and 24 °C. Young flies tended to have shorter flight bouts than older flies, which was associated with them flying shorter distances. Heavier flies with greater wing loading flew further than lighter flies. Flight distances recorded on flight mills approximated those recorded in the field, and tethered flight patterns suggest a need to factor temperature into the interpretation of trap captures.  相似文献   

7.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables in South‐east Asia, and, because of quarantine restrictions, impedes international trade and economic development in the region. Revealing genetic variation in oriental fruit fly populations will provide a better understanding of the colonization process and facilitate the quarantine and management of this species. The genetic structure in 15 populations of oriental fruit fly from southern China, Laos and Myanmar in South‐east Asia was examined with a 640‐bp sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. The highest levels of genetic diversity were found in Laos and Myanmar. Low to medium levels of genetic differentiation (FST ≤ 0.134) were observed among populations. Pooled populations from mainland China differed from those in Laos and Myanmar (FST = 0.024). Genetic structure across the region did not follow the isolation‐by‐distance model. The high genetic diversity observed in Laos and Myanmar supports the South‐east Asian origin of B. dorsalis. High genetic diversity and significant differentiation between some populations within mainland China indicate B. dorsalis populations have been established in the region for an extended period of time. High levels of genetic diversity observed among the five populations from Hainan Island and similarity between the Island and Chinese mainland populations indicate that B. dorsalis was introduced to Hainan from the mainland and has been on the island for many years. High genetic diversity in the recently established population in Shanghai (Pudong) suggests multiple introductions or a larger number of founders.  相似文献   

8.
We evaluated biopesticides based on entomopathogenic fungi, azadirachtin and horticultural oils for the management of the chilli thrips, Scirtothrips dorsalis Hood, an economically significant invasive pest in the United States. Insecticides were applied four times at 7‐ to 10‐day intervals against established S. dorsalis infestations on shrub roses KnockOut®, Rosa x ‘Radrazz’ under simulated nursery conditions. When applied as stand‐alone treatments, Beauveria bassiana GHA (BotaniGard® ES), Metarhizium brunneum F52 (Met‐52 EC), a horticultural oil (SuffOil‐X®) and azadirachtin (Molt‐X®) at label rates provided significant control, reducing populations of S. dorsalis by 48–71% compared with control over 4–6 weeks. Similar results were observed when the biopesticides were applied in rotation with each other. A conventional standard, spinosad (Conserve® SC), was consistently the most effective treatment in these studies, reducing thrips populations by >95% overall. In another study, more effective control (87%–92%) was achieved in biopesticide rotation programmes that included spinosad, when compared with those that did not. Results also showed that these biopesticides can be tank‐mixed. However, there was no evidence that B. bassiana or M. brunneum combined with azadirachtin resulted in additive or synergistic control, as neither tank‐mix treatment improved control compared with azadirachtin alone. These findings highlight the potential use of biopesticides in rotation programmes with conventional insecticides to manage S. dorsalis on roses. Biopesticides evaluated in this study can be incorporated into an IPM programme for roses.  相似文献   

9.
Insects commonly rely on olfactory, gustatory and visual cues when deciding where to lay eggs. The olfactory cues that stimulate oviposition in the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), are not well understood. Here, we show that two known oviposition stimulants of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)—γ‐octalactone and benzothiazole—strongly elicit aggregation and oviposition in B. tryoni. Two other known oviposition stimulants of B. dorsalis—ethyl tiglate and 1‐octen‐3‐ol—elicit aggregation but not oviposition. Highlighting species overlap, but also differences, in oviposition stimulants, these findings have practical application for mass‐rearing in which vast numbers of flies are reared for sterile insect technique programs and may also have practical application in the development of pest management and monitoring tools.  相似文献   

10.
Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is a major, economically important, and recent invasive pest of strawberries and other horticultural crops in United States. Several conventional insecticides are used for S. dorsalis management, and resistance development threatens loss of few available tools. Hence, our objectives were to: (1) determine the susceptibility of S. dorsalis to commonly used conventional insecticides: spinetoram, acetamiprid, cyantraniliprole and bifenthrin, and (2) establish LC50 and LC90 dosages for spinetoram against S. dorsalis. Sampling of S. dorsalis populations was conducted twice in seven strawberry fields in Florida during the strawberry field season between 2019 and 2020. Leaf-disc bioassays were performed with field collected populations along with a susceptible 2-year-old laboratory culture of S. dorsalis. Overall, at highest recommended rate the percent mortality of late season S. dorsalis populations from five out of seven collection sites was lower (~41%) than average mortality observed with early season populations (~72%). Populations from at least four out of seven sampling sites exhibited significantly lower mortality than the laboratory susceptible culture in late season. The LC50 and LC90 values for spinetoram for the susceptible laboratory population were 0.026 and 8.64 ppm, respectively. On the other hand, LC50 values of field collected populations to spinetoram varied with resistance ratios ranging from 6 to 269 fold as compared against the laboratory strain. Our results suggest that susceptibility of S. dorsalis to commonly used insecticides in strawberries varies significantly between early and late season populations within the same crop season. The efficacy of bifenthrin against S. dorsalis was particularly low (~ reduced to half in late season), especially among field collected populations. Our results indicate an urgent need to incorporate other pest management strategies, as well as effective rotation programs to reduce selection for resistance among populations of S. dorsalis in strawberry production.  相似文献   

11.
Studies were conducted to determine attraction and feeding propensity of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to different protein bait mixtures with and without the insecticides malathion, spinosad, and phloxine B. Protein baits were more attractive to females than to males. Protein-starved females responded more than protein-fed females. The type of protein (USB® yeast hydrolysate enzymatic, Mazoferm®E802, Nu-Lure®Insect Bait, or Provesta® 621 autolyzed yeast extract) in the bait had a major influence on C. capitata attraction, which was strongest to fresh Provesta. Aged baits (four day-old) were not as attractive as fresh baits. In feeding propensity studies, highest response was observed for USB protein. On the basis of attraction and feeding responses Provesta (attraction and feeding) and USB (feeding) outperformed the standard Nu-Lure. Protein-starved flies were much more likely to feed on protein compared to protein-fed flies. For protein-starved flies, a mixture of Provesta and malathion repelled fruit flies, compared to a mixture of Provesta and spinosad or phloxine B. This was not the case with protein–fed flies. The wasp Fopius arisanus (Sonan), one of C. capitata's primary natural enemies in Hawaii, would not consume protein baits. Our studies suggest that spinosad or phloxine B, with low contact toxicity, mixed with protein baits offers a more environmentally friendly choice for control of C. capitata and conservation of F. arisanus, whereby the nontarget effects of broad spectrum contact poisons such as malathion can be avoided. Presumably, due to greater selectivity with spinosad and phloxine B bait treatments, the host would be killed, but not the natural enemy.  相似文献   

12.
The soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae) is a pest of the soya bean, and increasing populations have been observed on several crops in Brazil. Control of this pest is accomplished using insecticides, particularly with new products recently launched in the market. The effectiveness of these insecticides against C. includens and their impact on natural enemies need further study. Therefore, this study aimed to determine the toxicity of nine insecticides for C. includens and their effects on the Blaptostethus pallescens. Toxicity was increased via the addition of an insecticide synergist, and behavioural changes in Blaptostethus pallescens, an anthocorid predator of C. includens, were assessed. Except for acephate, all other insecticides showed high toxicity to C. includens (mortality >80%). The estimated lethal time (LT50) for C. includens was shorter for methomyl, cartap and spinosad than others six insecticides tested in this work. Chlorantraniliprole, chlorfenapyr, deltamethrin, flubendiamide, indoxacarb and spinosad showed selectivity for the predator B. pallescens and exhibited a lower toxicity to the predator than to C. includens. The detoxifying enzymes monooxygenase and glutathione S‐transferase may be involved in the selectivity mechanisms of these insecticides for the predator based on the results obtained with the synergized insecticides. Only the insecticides cartap, indoxacarb and spinosad changed the behaviour of the predator B. pallescens. These three insecticides are repellent, and the predator avoids them. However, the predator tended to remain on the surface treated with flubendiamide longer. Our results suggest that the insecticides chlorfenapyr, chlorantraniliprole, flubendiamide, spinosad and indoxacarb are the most promising compounds for use against C. includens. These compounds also preserve populations of B. pallescens and allow more sustainable integrated pest management programmes.  相似文献   

13.
Insect growth regulators (IGRs) are currently the fastest‐growing class of insecticides, and in Turkey these products represent a new approach to pest control. In recent years, several IGRs were also registered for the control of the house fly, Musca domestica L. (Diptera: Muscidae), in Turkey. A field survey was conducted in the summers of 2006 and 2007 to evaluate resistance to some agriculturally and medically used IGRs on house flies from livestock farms and garbage dumps in the greenhouse production areas (Merkez, Kumluca, Manavgat, and Serik) of Antalya province (Southwestern Turkey). The results of larval feeding assay with technical diflubenzuron, methoprene, novaluron, pyripoxyfen, and triflumuron indicate that low levels (RF<10‐fold) of resistance to the IGRs exist in the house fly populations from Antalya province. Exceptions, however, were two populations, Guzoren and Toptas, from the Kumluca area which showed moderate resistance to diflubenzuron with 11.8‐fold in 2006 and 13.2‐fold in 2007, respectively. We found substantial variation in susceptibility of field‐collected house fly populations from year to year and from product to product. We generally observed an increase in resistance at many localities sampled from 2006 to 2007. The implications of these results to the future use of IGRs for house fly control are discussed. It will be critically important to continue monitoring efforts so that appropriate steps can be taken if resistance levels start to increase.  相似文献   

14.
Jackson traps baited with male lures with or without insecticides are essential components of surveillance and monitoring programmes against pest tephritid fruit flies. The ability of a trap to capture a fly that enters, sometimes termed ‘trap efficiency’, is dependent on many factors including the trap/lure/toxicant combination. We tested the effects of three important components of Jackson traps on efficiency of capture of two important fruit fly species, using the ‘standard’ (i.e. as they are used in the state-wide surveillance programme in California) and alternative setups: Insecticide (Naled, DDVP or None), type of adhesive on the sticky panel (Seabright Laboratories Stickem Special Regular or Stickem Special HiTack) and use of a single or combination male lure (Methyl eugenol and/or cuelure). Experiments were conducted in large outdoor carousel olfactometers with known numbers of Bactrocera dorsalis and Zeugodacus cucurbitae and by trapping wild populations of the same two species. Lures were aged out to eight weeks to develop a comprehensive dataset on trap efficiency of the various combinations. Results indicate that the current liquid lure/naled combinations on cotton wicks used in California for surveillance of these flies can be effectively replaced by plastic polymer plugs for the lure and pre-packaged DDVP strips with no loss of trap efficiency for eight weeks of use or longer. The ‘high tack’ adhesive showed no advantage over the current standard against these flies, and both have low efficiency when used without an insecticide in the trap. Combination lure + DDVP varied when compared to the current standard liquid lure + naled: Olfactometer assays showed similar efficiency between them for B. dorsalis, but higher efficiency for the wafer against Z. cucurbitae. Field result showed similar or slightly higher performance of the wafer compared with the standard for B. dorsalis, but a much lower catch of Z. cucurbitae.  相似文献   

15.
A residual contact vial plus water (RCVpW) bioassay method, in which water was supplemented to minimize control mortality, was established to monitor insecticide resistance in field populations of the melon thrips, Thrips palmi. In the RCVpW, median lethal doses (LD50) of six insecticides commonly used in T. palmi control, were determined at 8 h post-treatment, using a susceptible RDA strain according to the RCVpW protocol. Diagnostic doses for on-site resistance monitoring of the six insecticides, which were determined as doses two-fold higher than required to achieve LD90 in the RDA strain, were in the range of 0.299 to 164.3 μg?1 cm2. Insecticide resistance levels in five field populations of T. palmi were evaluated to test the applicability of RCVpW in monitoring the pest. Although the RDA strain exhibited 100% mortality to diagnostic doses, field populations showed a reduced mortality in response to all test insecticides, indicating different degrees of resistance. In particular, all test field populations exhibited a significantly low mortality in response to spinosad, suggesting a wide distribution of spinosad resistance. Synergistic bioassay revealed that cytochrome P450-mediated metabolic factor is involved in spinosad resistance in the Korean population. Interestingly, an apparently reduced mortality to emamectin benzoate and chlofenapyr was observed in some field populations, perhaps suggesting uneven distribution of resistance to these insecticides in field populations. Our study showed that the RCVpW protocol can be employed both as an on-site resistance monitoring method for major thrip species, and in the selection of appropriate insecticides for their control.  相似文献   

16.
Population dynamics of Bactrocera dorsalis Hendel (Diptera: Tephritidae) were studied through pheromone trapping over 4 years (1997, 1999, 2000, 2003) in the Kunming region, a high plateau area in southwestern China. B. dorsalis immigrates from southern Yunnan to Kunming each year, and occurs during early May through November. Annual trap captures recorded an increase in the B. dorsalis populations from May to July, when they peaked in abundance, and a decline until November. No flies were detected from November to April. The fruit flies had two generations. There was considerable overlapping due to the continuous arrival of immigrating flies during the summer months. Annual capture rates were significantly related to numbers of flies caught in July when peak captures were recorded; whereas the peak captures, in turn, positively depended on numbers of flies recorded in May, the first month of fly appearance in the current year. It suggested that the annual population abundance was mainly dependent on the size of the initial emigrating population. A daily average temperature of 18℃ was probably the threshold temperature required for the flies to undertake long-range dispersal, which partially explained the start of the fly in May each year on this high plateau. Under field conditions, the fruit flies can withstand 13℃ as a daily average temperature. No flies were recorded in any of the study years at a daily temperature colder than 10 ℃.  相似文献   

17.
Fourteen populations of the diamondback moth, Plutella xylostella (L.), were collected from fields of crucifer vegetables in the United States, Mexico, and Thailand in 1999 and 2000 for susceptibility tests with spinosad. Most populations were susceptible to spinosad and similar to earlier baseline values, but populations from Thailand and Hawaii showed high levels of tolerance. A statewide survey in Hawaii in 2000 and 2001 indicated resistance problems on several islands. One colony collected in October 2000 from Pearl City, HI, was subjected to further selection pressure, using spinosad in the laboratory, and then was used as the resistant strain (Pearl-Sel) for other tests. Spray tests using the recommended field rates of spinosad on potted broccoli plants in the greenhouse confirmed that field control failures due to resistance were possible in the areas of these collections. Analysis of probit lines from F1 reciprocal crosses between the Pearl-Sel and S strain indicated that resistance to spinosad was inherited autosomally and was incompletely recessive. A direct test of monogenic inheritance based on the F1 x Pearl-Sel backcrosses suggested that resistance to spinosad was probably controlled by one locus. The synergists S,S,S-tributyl phosphorotrithioate and piperonyl butoxide did not enhance the toxicity of spinosad to the resistant colony, indicating metabolic mediated detoxification was probably not responsible for the spinosad resistance. Two field colonies in Hawaii that were resistant to spinosad were not cross-resistant to emamectin benzoate or indoxacarb. Resistance developed in Hawaii due to the continuous cultivation of crucifers in which as many as 50 applications of spinosad per year may have been made to a common population of P. xylostella in sequential plantings, although each grower might have used the labeled restrictions for resistance management. Resistance management strategies will need to address such cropping and pest management practices.  相似文献   

18.
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), is an invasive pest of orchards around the world, particularly in Asian countries such as China. Light traps offer a potential means for pest monitoring and management. This study aimed to evaluate the sensitivity of the fly to light and investigate the impact of monochromatic light in the sensitivity spectrum on B. dorsalis. Six light wavelengths in LEDs – green (522 nm), yellow (596 nm), blue (450 nm), red (633 nm), purple (440 nm), and white (compound light) – were adapted to test responses of 5‐, 10‐, and 20‐day‐old B. dorsalis adults kept in laboratory conditions. We also tested the effects of green and red lights on pupal development and adults’ life activities. The results indicated a phototaxis preference rank in B. dorsalis adults to monochromatic LEDs with, in decreasing order, green, yellow, purple, blue, and red. Moreover, positive phototaxis significantly increased with age. Male adults are more sensitive than female adults to test lights, mainly at the age of 10 and 20 days. Emergence rates of pupae exposed to 12 and 24 h green light daily were 42 and 67%, respectively, whereas controls held in red light emerged at 33 and 37%, respectively. Furthermore, body weight, female fecundity, and mortality of B. dorsalis in night‐time exposure of green light (from 21:00 to 09:00 hours; during daytime flies were illuminated by white LED light) were significantly higher than in red‐light test groups and dark controls. In conclusion, B. dorsalis displayed preference toward green light, and fly age and gender seemed to significantly impact the phototactic behavior. Green LED light exposure during nighttime remarkably improved the emergence rates of B. dorsalis, and it enhanced growth, development, and ovipositing peak period, but decreased adult lifespan. This research lays a foundation for the development of new trap models, e.g., with green sticky cards or green light, for monitoring and control of B. dorsalis in the field.  相似文献   

19.
Six polymorphic microsatellite loci are isolated from the Oriental fruit fly Bactrocera dorsalis (Hendel), an agricultural pest in Asia, including Taiwan. To assess their potential utility as high‐resolution genetic markers, polymerase chain reaction (PCR) primers, amplification conditions, and an automated fluorescence detection protocol were developed. In analyses of 71 individual flies from six different areas of Taiwan, allele numbers ranged from five to 25 were detected for each locus. The observed heterozygosity ranged between 0.268 and 0.737 among these loci. No linkage disequilibrium was found. These microsatellite markers have potential utility to population structure and gene flow studies of B. dorsalis (Hendel).  相似文献   

20.
Bactrocera dorsalis (Diptera: Tephritidae) is an important pest for many tropical and subtropical fruits. The fly is probably introduced in Yunnan, a southwestern province of China that shares borders with Vietnam, Laos and Myanmar. Depending on local environmental conditions, this species occurs either only in the most favorable seasons or year-round. To infer the genetic diversity and structure of the fly in the region, and to understand the relationships between the flies of year-round and seasonal areas, we analyzed 304 individuals from 14 populations using the mitochondrial cytochrome oxidase I gene (COI). The sampled populations were structured into four groups, probably isolated by the main natural barriers in Yunnan such as mountain ranges and rivers. Our data suggest either that B. dorsalis in Yunnan originated from multiple introductions events, even if the source populations still need to be identified; or that Yunnan is a natural origin of this species (i.e., that it is not invasive there). Finally, we found some evidences that the seasonal populations were colonized from nearby year-round populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号