首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
2.
The sequence of a mouse Hox 2.9 cDNA clone is presented. The predicted homeodomain is similar to that of the Drosophila gene labial showing 80% identity. The equivalent gene in the Hox 1 cluster is Hox 1.6 which shows extensive similarity to Hox 2.9 both within and outside the homeodomain. Hox 2.9 and Hox 1.6 are the only two mouse members of the labial-like family of homeobox-containing genes as yet identified. Hox 2.9 has previously been shown to be expressed in a single segmental unit of the developing hindbrain (rhombomere) and has been predicted to be involved in conferring rhombomere identity. To analyse further the function of Hox 2.9 during development and to determine if the other mouse labial-like gene Hox 1.6, displays similar properties, we have investigated the expression patterns of these two genes and an additional rhombomere-specific gene, Krox 20, on consecutive embryonic sections at closely staged intervals. This detailed analysis has enabled us to draw the following conclusions: (1) There are extensive similarities in the temporal and spatial expression of Hox 2.9 and Hox 1.6, throughout the period that both genes are expressed in the embryo (7 1/2 to 10 days). At 8 days the genes occupy identical domains in the neuroectoderm and mesoderm with the same sharp anterior boundary in the presumptive hindbrain. These similarities indicate a functional relationship between the genes and further suggest that the labial-like genes are responding to similar signals in the embryo. (2) By 9 days the neuroectoderm expression of both genes retreats posteriorly along the anteroposterior (AP) axis. The difference at this stage between the expression patterns is the persistence of Hox 2.9 in a specific region of the hindbrain, illustrating the capacity of Hox 2.9 to respond to additional positional regulatory signals and indicating a unique function for this gene in the hindbrain. (3) The restriction of Hox 2.9 expression in the hindbrain occurs at 8 1/2 days, approximately the same time as Krox 20 is first detected in the posterior adjoining domain. The mutually exclusive expression of Hox 2.9 and Krox 20 demarcated by sharp expression boundaries suggest that compartmentalisation of cells within the hindbrain has occurred up to 6 h before rhombomeres (morphological segments) are clearly visible. (4) Hox 2.9 expression is confined to the region of rhombomere 4 that shows cell lineage restriction and, unlike Krox 20, is expressed throughout the period that rhombomeres are visible (to 11 1/2 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have isolated two mouse genes, Mox-1 and Mox-2 that, by sequence, genomic structure and expression pattern, define a novel homeobox gene family probably involved in mesodermal regionalization and somitic differentiation. Mox-1 is genetically linked to the keratin and Hox-2 genes of chromosome 11, while Mox-2 maps to chromosome 12. At primitive streak stages (approximately 7.0 days post coitum), Mox-1 is expressed in mesoderm lying posterior of the future primordial head and heart. It is not expressed in neural tissue, ectoderm, or endoderm. Mox-1 expression may therefore define an extensive 'posterior' domain of embryonic mesoderm before, or at the earliest stages of, patterning of the mesoderm and neuroectoderm by the Hox cluster genes. Between 7.5 and 9.5 days post coitum, Mox-1 is expressed in presomitic mesoderm, epithelial and differentiating somites (dermatome, myotome and sclerotome) and in lateral plate mesoderm. In the body of midgestation embryos, Mox-1 signal is restricted to loose undifferentiated mesenchyme. Mox-1 signal is also prominent over the mesenchyme of the heart cushions and truncus arteriosus, which arises from epithelial-mesenchymal transformation and over a limited number of craniofacial foci of neural crest-derived mesenchyme that are associated with muscle attachment sites. The expression profile of Mox-2 is similar to, but different from, that of Mox-1. For example, Mox-2 is apparently not expressed before somites form, is then expressed over the entire epithelial somite, but during somitic differentiation, Mox-2 signal rapidly becomes restricted to sclerotomal derivatives. The expression patterns of these genes suggest regulatory roles for Mox-1 and Mox-2 in the initial anterior-posterior regionalization of vertebrate embryonic mesoderm and, in addition, in somite specification and differentiation.  相似文献   

4.
5.
To further analyse requirements for Notch signalling in patterning the paraxial mesoderm, we generated transgenic mice that express in the paraxial mesoderm a dominant-negative version of Delta1. Transgenic mice with reduced Notch activity in the presomitic mesoderm as indicated by loss of Hes5 expression were viable and displayed defects in somites and vertebrae consistent with known roles of Notch signalling in somite compartmentalisation. In addition, these mice showed with variable expressivity and penetrance alterations of vertebral identities resembling homeotic transformations, and subtle changes of Hox gene expression in day 12.5 embryos. Mice that carried only one functional copy of the endogenous Delta1 gene also showed changes of vertebral identities in the lower cervical region, suggesting a previously unnoticed haploinsufficiency for Delta1. Likewise, in mice carrying a null allele of the oscillating Lfng gene, or in transgenic mice expressing Lfng constitutively in the presomitic mesoderm, vertebral identities were changed and numbers of segments in the cervical and thoracic regions were reduced, suggesting anterior shifts of axial identity. Together, these results provide genetic evidence that precisely regulated levels of Notch activity as well as cyclic Lfng activity are critical for positional specification of the anteroposterior body axis in the paraxial mesoderm.  相似文献   

6.
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.  相似文献   

7.
8.
The anteroposterior identity of cranial neural crest cells is thought to be preprogrammed before these cells emigrate from the neural tube. Here we test this assumption by developing techniques for transposing cells in the hindbrain of mouse embryos, using small numbers of cells in combination with genetic and lineage markers. This technique has uncovered a surprising degree of plasticity with respect to the expression of Hox genes, which can be used as markers of different hindbrain segments and cells, in both hindbrain tissue and cranial neural crest cells. Our analysis shows that the patterning of cranial neural crest cells relies on a balance between permissive and instructive signals, and underscores the importance of cell-community effects. These results reveal a new role for the cranial mesoderm in patterning facial tissues. Furthermore, our findings argue against a permanently fixed prepatterning of the cranial neural crest that is maintained by passive transfer of positional information from the hindbrain to the periphery.  相似文献   

9.
10.
Synthetic oligopeptides derived from the predicted Hox 3.1 protein coding sequence were used for the production of antibodies (anti-aa2) that specifically recognize Hox 3.1 protein in tissue sections. These antibodies were applied in immunohistochemical studies to monitor the expression of Hox 3.1 protein within the central nervous system (CNS) of embryonic and adult mice. We demonstrate congruency between the distinct Hox 3.1 RNA and protein expression patterns in the developing spinal cord by direct comparison of in situ hybridization and immunohistochemical staining in frozen sagittal sections from embryos of 12.5 days of gestation. A distinct pattern of spatially restricted expression of Hox 3.1 protein within the spinal cord was first detected at around 10.5 days of embryonic development. Within certain anteroposterior limits the geometries of this expression pattern change drastically during subsequent embryonic stages, concomitant with important cytoarchitectural changes in the developing spinal cord. Analyses on subcellular levels indicate predominant accumulation of Hox 3.1 protein within nuclei of neuronal cells. In addition to the nuclear localization in subsets of embryonic cells, persistent accumulation of Hox 3.1 protein was shown in nuclei of fully differentiated and mature neuronal cells of the adult CNS.  相似文献   

11.
The developmental expression patterns of four genes, Hox 1.1, Hox 1.2, Hox 1.3 and Hox 3.1, were examined by in situ hybridization to serial embryonic sections. The three genes of the Hox 1 cluster, used in this study, map to adjacent positions along chromosome 6, whereas the Hox 3.1 gene maps to the Hox 3 cluster on chromosome 15. The anterior expression limits in segmented mesoderm varied among the four genes examined. Interestingly, a linear correlation exists between the position of the gene along the chromosome and the extent of anterior expression. Genes that are expressed more posterior are also more restricted in their expression in other mesoderm-derived tissues. The order of expression anterior to posterior was determined as: Hox 1.3, Hox 1.2, Hox 1.1 and Hox 3.1. Similarly, genes of the Drosophila Antennapedia and Bithorax complex specifying segment identity also exhibit anterior expression boundaries that correlate with gene position. The data suggest that Hox genes may specify positional information along the anterior-posterior axis during the formation of the body plan.  相似文献   

12.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.  相似文献   

13.
Previous studies of head induction in the chick have failed to demonstrate a clear role for the hypoblast and anterior definitive endoderm (ADE) in patterning the overlying ectoderm, whereas data from both mouse and rabbit suggest patterning roles for anterior visceral endoderm (AVE) and ADE. Based on similarity of gene expression patterns, fate and a dual role in 'protecting' the prospective forebrain from caudalising influences of the organiser, the chick hypoblast has been suggested to be the homologue of the mouse anterior visceral endoderm. In support of this, when transplanted to chick embryos, the rabbit AVE induces anterior markers in the chick epiblast. To reevaluate the role of the hypoblast/ADE (lower layer) in patterning the chick ectoderm, we used rostral blastoderm isolates (RBIs) as an assay, that is, rostral regions of blastoderms transected at levels rostral to the node. RBIs are, therefore, free from the influences of Hensen's node and ingressing axial mesoderm - tissues that are able to induce Ganf, the earliest specific marker of anterior neural plate. We demonstrate, using such RBIs (or RBIs dissected to remove the lower layer with or without tissue replacement), that the hypoblast/ADE (lower layer) is required and sufficient for patterning anterior positional identity in the overlying ectoderm, leading to expression of Ganf in neuroectoderm. Our results suggest that patterning of anterior positional identity and specification of neural identity are separable events operating to pattern the rostral end of the early chick embryo. Based on this new evidence we propose a revised model for establishing anteroposterior polarity, neural specification and head patterning in the early chick that is consonant with that occurring in other vertebrates.  相似文献   

14.
15.
16.
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.  相似文献   

17.
The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号