首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
稳定同位素技术在植物水分利用研究中的应用   总被引:24,自引:0,他引:24  
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。  相似文献   

2.
土壤-植物-大气连续体(SPAC)是生态水文学的重点研究对象,其水分运移过程对于干旱半干旱区生态植被建设和水资源综合管理具有重要意义。氢氧稳定同位素较高的灵敏性和准确度有助于揭示这一过程。介绍了氢氧稳定同位素在土壤-大气界面、土壤-地下水界面、土壤-植物界面和植物-大气界面水分补给传输过程中的应用,包括土壤水分来源和蒸发;水分补给入渗机制和滞留时间;植物水分来源和水力再分配;蒸散发分割和叶片吸水的相关研究,同时明确了氢氧稳定同位素技术在应用过程中存在的一些不确定性以及未来亟需加强的方面,以期为利用稳定同位素技术对生态水文过程的研究提供参考依据。  相似文献   

3.
于静洁  李亚飞 《生态学报》2018,38(22):7942-7949
稳定氢氧同位素技术被广泛运用于生态系统、特别是干旱区生态系统中植物水分来源的研究,其理论假设为"水分被植物根系吸收并向木质部运输过程中不发生氢氧同位素分馏"。生态系统中不同水源的氢氧同位素组成普遍存在显著差异,为从水源混合体中区分出各水源的贡献率提供了前提条件。但在实际应用过程中,诸多因素导致稳定氢氧同位素技术定量植物水分来源的结果具有不确定性。综合已有研究并加以分析,举证说明植物吸收水分相对于水源同位素变化的滞后性、水源同位素的季节性变化、蒸发作用和水源之间的混合作用对水源同位素的影响等导致植物水分来源定量结果不确定性的几个因素,以期为今后稳定氢氧同位素技术在植物水分来源领域的应用提供参考。  相似文献   

4.
植物水分利用策略研究进展   总被引:2,自引:0,他引:2  
水分是影响植物生长发育的重要因子之一。地球上大多数生态系统中的植物都会经历一个降水相对稀少的干旱季节,植物在不同的季节与不同的生态系统中究竟如何利用水分,利用哪些水分去获得生存,成为一个人们关注的问题。在过去的20年,稳定同位素技术在植物生态学中的应用得到了稳定长足的发展。因为陆地植物(少数排盐种类除外)在水分吸收过程中不发生同位素分馏,因此可以利用δD与δ18O数据进行水分获取方式的研究。对植物木质部水分以及其潜在水源的稳定同位素进行分析,并参考土壤水势、叶片水势、土壤含水量等数据,同时运用二元或三元混合模型,可以定量确定植物的水分利用来源。大量的研究表明,不同功能型、生长阶段、季节的植物以及不同物种往往具有不同的水分利用策略。  相似文献   

5.
水分是生态系统的重要因子,水同位素自然示踪和人工标记是研究生态系统水循环过程的重要方法,利用水同位素所具有的示踪、整合和指示等功能特征,通过测量和分析生态系统中不同组分所含水分的氢氧同位素比值的变化情况,可实现生态系统蒸散发的拆分、植物水分来源判定和叶片水同位素富集机理研究,是研究生态系统水循环过程机理和生态学效应不可或缺的技术手段。该文首先简要回顾了生态系统水同位素发展和应用的历史,在此基础上阐述了水同位素技术和方法在生态学研究热点领域应用的基本原理,概述了水同位素在植物水分来源判定、蒸散发拆分、露水来源拆分、降水的水汽来源拆分以及~(17)O-excess的研究进展,并介绍了植物叶片水富集机理及基于稳定同位素的碳水耦合研究。最后,指出了水同位素研究亟待解决的问题,展望了水同位素应用的前沿方向,旨在利用水同位素分析加深对生态系统的水分动态、植被格局和生理过程的理解。  相似文献   

6.
《植物生态学报》2020,44(4):350
水分是生态系统的重要因子, 水同位素自然示踪和人工标记是研究生态系统水循环过程的重要方法, 利用水同位素所具有的示踪、整合和指示等功能特征, 通过测量和分析生态系统中不同组分所含水分的氢氧同位素比值的变化情况, 可实现生态系统蒸散发的拆分、植物水分来源判定和叶片水同位素富集机理研究, 是研究生态系统水循环过程机理和生态学效应不可或缺的技术手段。该文首先简要回顾了生态系统水同位素发展和应用的历史, 在此基础上阐述了水同位素技术和方法在生态学研究热点领域应用的基本原理, 概述了水同位素在植物水分来源判定、蒸散发拆分、露水来源拆分、降水的水汽来源拆分以及 17O-excess的研究进展, 并介绍了植物叶片水富集机理及基于稳定同位素的碳水耦合研究。最后, 指出了水同位素研究亟待解决的问题, 展望了水同位素应用的前沿方向, 旨在利用水同位素分析加深对生态系统的水分动态、植被格局和生理过程的理解。  相似文献   

7.
陆生植物稳定碳同位素组成与全球变化   总被引:18,自引:5,他引:13  
分析了大气CO2浓度、温度、降水和海拔高度等环境因素对陆生植物稳定性碳同位素组分的影响及其作用机理,综述了国内外碳稳定同位素技术在全球变化研究中的进展和应用,如重建大气CO2浓度变化,揭示温度、降水对树木生长的“滞后效应”和“幼龄效应”,确定不同光合型植物随海拔高度的分布变化,以及通过碳稳定同位素技术揭示不同时间尺度上和不同气候条件下的植物水分利用效率变化及不同生活型植物的水分利用效率差异,并探讨研究中存在的问题及其研究前景.  相似文献   

8.
稳定同位素在滨海湿地生态系统研究中的应用现状与前景   总被引:2,自引:0,他引:2  
滨海湿地生态系统位于海陆交错地区,具有独特的生态系统特征、很高的服务功能和巨大的资源潜力,但同时也受到人为活动的严峻威胁.作为天然示踪物的稳定同位素为研究滨海湿地生态环境问题提供了重要手段.本文着重探讨了稳定同位素在滨海湿地动物食物源和食物网结构、滨海植物水分来源和利用效率、环境污染和生物入侵等全球变化对滨海湿地结构和功能的影响等方面的应用,指出了当前应用中存在的不足,如食物网研究中样品处理方式和富集度的确定,水分来源研究中水分抽提方法和仪器选择等,展望了稳定同位素在滨海湿地生态系统修复评价以及碳循环和温室气体排放研究中的应用前景.  相似文献   

9.
基于稳定氧同位素确定植物水分来源不同方法的比较   总被引:3,自引:0,他引:3  
利用稳定同位素技术确定植物水分来源,对提高生态水文过程的认识和对干旱半干旱区的生态管理至关重要。目前基于稳定同位素技术确定植物水分来源的方法众多,但不同方法之间对比的研究较少。本研究基于原位样品采集,室内实验测试,利用直接对比法、多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)和吸水深度模型分析植物水分来源,并对比各方法的优缺点。结果表明:相对于多元线性混合模型(IsoSource)而言,贝叶斯混合模型(MixSIR、MixSIAR)具有更好的水源区分性能,但对数据要求较高,且植物木质部水和潜在水源同位素组成的标准差越小,模型运行结果的可信度更高。本研究中贝叶斯混合模型(MixSIR)为最优解。在利用稳定氢氧同位素技术确定植物水分来源时,可先通过直接对比法定性判断植物可能利用的潜在水源,然后再用多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)计算出各潜在水源对植物的贡献率和贡献范围,必要时可评估模型性能,选择出最优模型,定量分析植物的水分来源。若植物主要吸收利用不同土层深度的土壤水,可结合吸水深度模型计算出植物吸收土壤水的平均深度。本研究为干旱半干旱地区利用同位素技术确定植物水分来源方法的选择提供了理论依据。  相似文献   

10.
土层浅薄地区植物水分来源研究方法   总被引:4,自引:0,他引:4  
植物水分来源取决于环境中有效水的分布及植物获取水分的能力.旱季,土层浅薄地区土壤水无法满足植物生长的需要,植物能否利用风化基岩层水分是其能否维持正常水分消耗的关键.本文综述了4种土层浅薄地区植物水分来源的研究方法,包括调查和分析植物根系生长与分布特征、监测地表以下各层次水分变化、监测并分析植物体水分指标季节变化以及运用稳定同位素技术区分植物水分来源,并进一步分析了各种方法的优势和局限性及其在我国西南喀斯特地区植物水分来源研究中的应用前景.  相似文献   

11.
在过去几十年中, 氮(N)稳定同位素技术的发展提高了人们对于陆地生态系统氮循环的认识。该文回顾了氮稳定同位素技术在研究生态系统氮循环中的历史, 综述了最近十多年来氮稳定同位素技术在陆地生态系统氮循环研究中的典型案例, 包括利用氮同位素自然丰度鉴定植物氮来源、指示生态系统氮状态和量化过程速率, 利用15N标记技术示踪氮的去向和再分布等。该文同时指出这些应用中存在的问题, 以及在陆地生态系统上氮稳定同位素技术今后研究的重点发展方向。  相似文献   

12.
在过去几十年中,氮(N)稳定同位素技术的发展提高了人们对于陆地生态系统氮循环的认识。该文回顾了氮稳定同位素技术在研究生态系统氮循环中的历史,综述了最近十多年来氮稳定同位素技术在陆地生态系统氮循环研究中的典型案例,包括利用氮同位素自然丰度鉴定植物氮来源、指示生态系统氮状态和量化过程速率,利用~(15)N标记技术示踪氮的去向和再分布等。该文同时指出这些应用中存在的问题,以及在陆地生态系统上氮稳定同位素技术今后研究的重点发展方向。  相似文献   

13.
基于节水灌溉技术原理与作物感知缺水的根源信号理论而提出的根系分区交替灌溉,是交替对作物部分根区进行正常的灌溉,其余根区受到适度水分胁迫的灌溉方式。应用同位素示踪技术追溯分根区交替供水条件下土壤-作物系统水分运转途径并揭示其节水调质机理是一个重要的研究方向。本文对根系分区交替灌溉的节水调质效应、节水机理、稳定性氢氧同位素在植物水分运移中的应用以及稳定性碳同位素在植物水分利用效率中的应用研究进展及应用前景作了简要介绍,并对将来需要重点研究的方向作了展望。以期为充分挖掘作物生理节水潜力,大幅度提高作物水分利用效率和实现节水、丰产、优质、高效的综合目标提供有效的调控途径。  相似文献   

14.
马晔  刘锦春 《西北植物学报》2013,33(7):1492-1500
稳定碳同位素技术已成为研究植物与环境之间关系最有效的方法之一。由于植物羧化效率的不同、12 C和13 C在植物体内迁移速率以及外界环境的不同,不同植物体内稳定性碳同位素比率(δ13 C值)有一定的差异。该文概述了稳定碳同位素的基本理论,并从气孔导度、叶肉细胞导度、叶片羧化效率分析了δ13 C变化的生物学机理;对近年来国内外有关不同环境因子对植物δ13 C值的影响、δ13 C值在群落及生态系统水平(以功能群、群落冠层及树轮为重点)、以及δ13 C值在碳循环中的应用研究进展进行综述,为以后稳定碳同位素研究提供参考。  相似文献   

15.
植物-水分关系是生态水文过程的重要环节,稳定同位素技术的应用极大地扩充了该领域的研究范围,提高了研究精度。但因植物样品的水分抽提费时费力,限制了该技术的应用。本研究以植物茎水抽提为例,采用低温真空蒸馏法,通过分析相同质量不同植物样品在同一时间梯度下水分提取率及基于同位素值的水分抽提时间曲线的变化特征,揭示不同植物茎水的最短抽提时间,并建立最短抽提时间与植物木材密度的相关关系。结果表明,目标植物盐肤木、红背山麻杆和火棘的木材密度分别为0.35、0.55和0.67 g·cm-3;质量基本相同(约3 g)的3种植物样品的水分提取率在45 min左右均接近100%;由于水分收集的滞后性,基于同位素值的最短抽提时间分别为不小于45、60和60 min,并随木材密度增大而延长。研究结果指示着建立木材密度与植物茎水最短抽提时间曲线的可能,能有效提高抽提效率。  相似文献   

16.
碳氮稳定同位素技术在草地生态系统研究中的应用日渐广泛,本文针对其在青藏高原高寒草甸生态系统中的研究与应用进行了总结。首先,探讨了环境因子(海拔、水肥、草地退化、温度)对青藏高原高寒草甸碳氮同位素组成(δ~(13)C、δ~(15)N)的影响:高寒草甸植物δ~(13)C值与海拔呈正相关,与大气压强、草地退化和温度均呈负相关,与降水的关系尚有争议;土壤δ~(13)C值与海拔和草地退化呈正相关;植被的δ~(15)N值与水肥呈正相关,土壤的δ~(15)N值与草地退化呈负相关。其次,综述了近年来该技术在高寒草甸植物光合型鉴定、植物水分利用、食物链营养关系、碳氮循环等方面的研究进展。最后,对碳氮稳定同位素技术在研究高寒草甸土壤有机碳与土壤呼吸、重现植被类型更替和气候演化历史、土壤N_2O溯源、探究高寒草甸退化的原因、藏药与动物食品产地溯源等方面的应用前景进行了展望,以期进一步发挥其在青藏高原高寒草甸研究中的潜力。  相似文献   

17.
碳稳定同位素技术在植物水分胁迫研究中的应用   总被引:26,自引:1,他引:25  
陈英华  胡俊  李裕红  薛博  严重玲 《生态学报》2004,24(5):1027-1033
植物体的碳稳定同位素组成主要由植物本身的生物学特性决定 ,但环境胁迫对其影响也十分明显。综述了碳稳定同位素技术在研究植物水分利用效率、生物量高低及判断历史气候依据等研究领域的进展 ,阐明了植物体的 δ1 3C值对干旱、盐分及其它环境因素的变化所引起的水分胁迫的响应 ,并对碳稳定同位素对水分胁迫的响应机理进行了归纳和推断  相似文献   

18.
环境条件对植物稳定碳同位素组成的影响   总被引:15,自引:0,他引:15  
植物稳定碳同位素技术是近年兴起的一项快速、可靠的技术。利用稳定碳同位素技术可以揭示碳同化的过程的许多方面的信息。1 3C和1 2 C同位素效应 ,使它们在进行碳循环时发生稳定碳同位素的分馏。植物光合作用过程中CO2 经气孔扩散分差和RUBPCase及PEPCase羧化分馏是造成植物稳定碳同位素比率 (R =1 3C/ 1 2 C)不同于源CO2 中碳同位素比率的主要原因。遗传因素和环境因子同时决定植物碳同位素组成。植物稳定碳同位素技术同时还是古气候重建和预测未来环境变化的理论基础。本文综述了光照、温度、水分、二氧化碳、矿质营养、盐分和大气污染物等环境因素对植物稳定碳同位素组成影响方面的研究进展。  相似文献   

19.
植物稳定碳同位素技术是近年兴起的一项快速、可靠的技术。利用稳定碳同位素技术可以揭示碳同化的过程的许多方面的信息。13C和12C同位素效应,使它们在进行碳循环时发生稳定碳同位素的分馏。植物光合作用过程中CO2经气孔扩散分差和RUBPCase及PEPCase羧化分馏是造成植物稳定碳同位素比率(R=13C/12C)不同于源CO2中碳同位素比率的主要原因。遗传因素和环境因子同时决定植物碳同位素组成。植物稳定碳同位素技术同时还是古气候重建和预测未来环境变化的理论基础。本文综述了光照、温度、水分、二氧化碳、矿质营养、盐分和大气污染物等环境因素对植物稳定碳同位素组成影响方面的研究进展。  相似文献   

20.
植物叶片水稳定同位素研究进展   总被引:10,自引:2,他引:8  
罗伦  余武生  万诗敏  周平 《生态学报》2013,33(4):1031-1041
植物叶片水稳定同位素变化可以直接沟通植物叶片内部与外界的物质和能量联系,并能够反映植物生长周围的气候与生态信息.另外,植物叶片水作为参与水循环的一个重要环节,了解叶片水稳定同位素组成有助于揭示其在局地水体稳定同位素循环中的分配与贡献.概述了国内外叶片水稳定同位素研究现况;介绍了叶片水稳定氢、氧同位素在植物体中的分馏过程及形式(热力学平衡分馏、动力学分馏以及生化分馏)以及影响叶片水稳定同位素组成的气象和生态因子;阐述了叶片水稳定同位素修正的Craig-Gordon稳态模型、string-of-lakes模型、Péclet效应的稳态模型、非稳态效应的模型、Péclet效应的非稳态模型以及二维模型的构建与完善过程;最后讨论了植物叶片水稳定同位素研究存在的问题,并从叶片水稳定同位素与气象、生态因子的关系,叶片水蒸腾线的斜率和截距及过量氘的意义,模型适用性的验证以及叶片水稳定同位素在水文循环的应用等方面展望了研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号