首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis.  相似文献   

2.
Most bacterial strains, which have been studied so far for their probiotic functions, are extensively used by manufacturers in developed countries. In our work, we sought to study a mix (called BSL) comprising three strains belonging to Lactobacillus fermentum, L. paraplantarum and L. salivarius, that were isolated from a traditional African pearl millet based fermented slurry. Our objective was to study this BSL cocktail in gnotobiotic rats, to evaluate their survival and their behavior in the digestive tract conditions. After a single oral inoculation of germfree rats with BSL, the species established stably in the digestive tract with the following hierarchy of abundance: L. salivarius> L. plantarum> L. fermentum. BSL cocktail was metabolically active since it produced 50 mM lactate and it expressed genes involved in binding mechanism in the caecum. Furthermore, the global morphology of the colon epithelium was not disturbed by the BSL cocktail. BSL cocktail did not modify mucus content and host mucus-related genes (MUC1, MUC2, MUC3 or resistin-like molecule β). The cocktail of lactobacilli enhanced the proliferating cell nuclear antigen (PCNA) at a level comparable to what was observed in conventional rats. PCNA was involved in proliferation and DNA repair, but the presence of the cocktail did not provoke proliferative events (with Ki67 as indicator), so we suppose BSL may help gut preservation. This work is the first step towards the selection of strains that are derived from traditional fermented food to formulate new probiotic mixture.  相似文献   

3.
Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV.  相似文献   

4.
In this work, Lactobacillus plantarum BP04 was employed as starter culture in dining-hall food waste storage with different inoculant levels at 0, 2 and 10% (v/w) to suppress the outgrowth of pathogenic and spoilage bacteria. Inoculation by Lactobacillus plantarum BP04 was effective in accelerating pH drop and reducing the growth period of enterobacteria to 9, 7 and 2 days, corresponding to inoculant levels at 0, 2 and 10% (v/w). Increasing inoculum levels were found to inhibit the growth of Lactobacillus brevis and Leuconostoc lactis. HPLC analysis revealed that lactic acid was the predominant organic acid during the treatment of dining-hall food waste. Its concentration varied among the fermented processes reflecting variations of microbial activity in the fermented media.  相似文献   

5.
We recently identified a novel probiotic strain Lactobacillus plantarum P-8 (L. plantarum P-8), which has been characterized in detail with regard to its probiotic potential. In the present study, soymilk fermented with L. plantarum P-8 was examined for its effects on diet-induced hyperlipidemia in Wistar rats. The experimental animals were divided into four groups: control group (C group), model group (M group), soymilk group (SM group) and fermented soymilk group (FSM group). The serum lipid levels, hepatic fat deposition, serum oxidative stress parameters, hepatic marker enzymes levels, organ indices, gut bacteria and fecal fat contents were analyzed. Fermented soymilk reduced the concentration of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in serum, with a significant elevation in high-density lipoprotein cholesterol (HDL) concentration. Our results also suggested the beneficial effects of fermented soymilk on the liver function, hyperlipidemia-induced oxidative stress and intestinal bacteria. Moreover, fermented soymilk could enhance the fecal excretion of TC, TG and bile acids. These findings demonstrated that soymilk fermented with L. plantarum P-8 was effective in improving the lipid metabolism in hyperlipidemic rats. The hypolipidemic effect of fermented soymilk was partly due to the inhibition of dietary fats absorption and regulation of fecal fats excretion mediated by gut bacteria.  相似文献   

6.
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

7.
Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.  相似文献   

8.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

9.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

10.
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.  相似文献   

11.

Background

Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran.

Methods and Results

A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse.

Conclusion

Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index.  相似文献   

12.
Camu-camu (Myriciaria dubia Mc. Vaugh) is a tropical fruit rich in phenolic antioxidants with diverse human health benefits. The aim of this study was to improve phenolic antioxidant–linked functionalities of camu–camu relevant for dietary management of early stages of type 2 diabetes (T2D) and associated hypertension using lactic acid bacterial (LAB) fermentation. Dried camu–camu powder combined with soymilk was fermented using two LAB strains, Lactobacillus plantarum & Lactobacillus helveticus individually and evaluated for total soluble phenolic content, total antioxidant activity, α-amylase, α-glucosidase, and angiotensin-I-converting enzyme (ACE) inhibitory activities using in vitro assay models. Overall, fermentation of camu–camu and soymilk combination with both LAB strains resulted in higher α-amylase, and α-glucosidase inhibitory activities, while total soluble phenolic content and antioxidant activity did not change significantly with fermentation. Improvement of ACE enzyme inhibitory activity was also observed when camu–camu (0.5 & 1%) and soymilk combination was fermented with L. plantarum. Therefore such safe and value added fermentation strategy with LAB can be used to improve human health relevant phenolic antioxidant profile in camu–camu and has relevance for designing innovative probiotic beverage to target improved food designs for dietary support for T2D and associated hypertension management.  相似文献   

13.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

14.
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.  相似文献   

15.
16.
Lactobacillus plantarum (L. plantarum) exopolysaccharide (EPS) is an important bioactive component in fermented functional foods. However, there is a lack of data concerning the effects of L. plantarum EPS on maturation of mouse dendritic cells (DCs). In this study, we purified L. plantarum EPS and examined its effects on cytokines production by dendritic cells in serum and intestinal fluid of BALB/c mice, then investigated its effects on phenotypic and functional maturation of mouse bone marrow-derived dendritic cells (BMDCs). Cytokines (nitric oxide, IL-12p70, IL-10 and RANTES) in serum and intestinal fluid were analyzed by enzyme linked immunosorbent assay (ELISA) after the mice received EPS for 2, 5 and 7 days, respectively. DCs derived from bone marrow of BALB/c mouse were treated with EPS, then the phenotypic maturation of BMDCs was analyzed using flow cytometer and the functional maturation of BMDCs was analyzed by ELISA, and, lastly, mixed lymphocyte proliferation was performed. We found the molecular weight of purified EPS was approximately 2.4×106 Da and it was composed of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2:1:1:10:4:205:215. We observed that L. plantarum EPS enriched production of nitric oxide, IL-12p70 and RANTES, and decreased the secretion of IL-10 in the serum or intestinal fluid as well as in the supernatant of DCs treated with the EPS. The EPS also up-regulated the expression of MHC II and CD86 on DCs surface and promoted T cells to proliferate in vitro. Our data provide direct evidence to suggest that L. plantarum EPS can effectively induce maturation of DCs in mice.  相似文献   

17.
Poultry is known to be a major reservoir of Salmonella. The use of lactic acid bacteria has become one of successful strategies to control Salmonella in poultry. The purpose of this study was to select lactic acid bacteria strains by their in vitro immunomodulatory properties for potential use as probiotics against Salmonella infection in broiler chicks. Among 101 isolated lactic acid bacteria strains, 13 strains effectively survived under acidic (pH 2.5) and bile salt (ranging from 0.1% to 1.0%) conditions, effectively inhibited growth of 6 pathogens, and adhered to Caco-2 cells. However, their in vitro immunomodulatory activities differed significantly. Finally, three strains with higher in vitro immunomodulatory properties (Lactobacillus plantarum PZ01, Lactobacillus salivarius JM32 and Pediococcus acidilactici JH231) and three strains with lower in vitro immunomodulatory activities (Enterococcus faecium JS11, Lactobacillus salivarius JK22 and Lactobacillus salivarius JM2A1) were compared for their inhibitory effects on Salmonella adhesion and invasion to Caco-2 cells in vitro and their antimicrobial effects in vivo. The former three strains inhibited Salmonella adhesion and invasion to Caco-2 cells in vitro, reduced the number of Salmonella in intestinal content, spleen and liver, reduced the levels of lipopolysaccharide-induced TNF-α factor (LITAF), IL-1β, IL-6 and IL-12 in serum and increased the level of IL-10 in serum during a challenge study in vivo more efficiently than the latter three strains. These results suggest that in vitro immunomodulatory activities could be used as additional parameters to select more effective probiotics as feed supplements for poultry.  相似文献   

18.
BackgroundTrichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection.Methodology/Principal findingsThe growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA′ plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group.ConclusionsTsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice.  相似文献   

19.
Nisin in combination with ultrahigh-pressure treatment (UHP) showed strong synergistic effects against Lactobacillus plantarum and Escherichia coli at reduced temperatures (<15°C). The strongest inactivation effects were observed when nisin was present during pressure treatment and in the recovery medium. Elimination (>6-log reductions) of L. plantarum was achieved at 10°C with synergistic combinations of 0.5 μg of nisin per ml at 150 MPa and 0.1 μg of nisin per ml at 200 MPa for 10 min. Additive effects of nisin and UHP accounted for only 1.2- and 3.7-log reductions, respectively. Elimination was also achieved for E. coli at 10°C with nisin present at 2 μg/ml, and 10 min of pressure at 200 MPa, whereas the additive effect accounted for only 2.6-log reductions. Slight effects were observed even against the yeast Saccharomyces cerevisiae with nisin present at 5 μg/ml and with 200 MPa of pressure. Combining nisin, UHP, and lowered temperature may allow considerable reduction in time and/or pressure of UHP treatments. Kill can be complete without the frequently encountered survival tails in UHP processing. The slightly enhanced synergistic kill with UHP at reduced temperatures was also observed for other antimicrobials, the synthetic peptides MB21 and histatin 5. The postulated mode of action was that the reduced temperature and the binding of peptides to the membrane increased the efficacy of UHP treatment. The increases in fatty acid saturation or diphosphatidylglycerol content and the lysylphosphatidyl content of the cytoplasm membrane of L. plantarum were correlated with increased susceptibility to UHP and nisin, respectively.  相似文献   

20.
A new starch-binding domain (SBD) was recently described in α-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus α-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus α-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号