首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
盐胁迫主要由Na+引起,过高的Na+浓度引起的离子毒害,渗透胁迫和K+/Na+比率的不平衡使植物新陈代谢异常,这是对大多数器官造成伤害的原因。植物抵御盐胁迫的主要方式是将细胞内过多的Na+从质膜向细胞外排放和将Na+在液泡中区隔化,这一过程是由Na+/H+ 逆向转运蛋白完成的。本文概述了植物中Na+/H+ 逆向转运蛋白的发现、特征、分子生物学方面的研究,以及Na+/H+ 逆向转运蛋白在植物耐盐性中的重要作用。  相似文献   

2.
拟南芥液泡膜Na+/H+逆向转运蛋白研究进展   总被引:2,自引:0,他引:2  
盐分是植物生长发育的主要限制因素之一,而离子在胞内区室之间的选择性运动对提高植物耐盐性是至关重要的。来自于拟南芥(Arabidopsis thaliana)的AtNHX1基因可编码Na /H 逆向转运蛋白,而Na /H 逆向转运蛋白AtNHX1可将细胞质中多余的Na 排进液泡来消除Na 的毒害,维持细胞的渗透平衡,提高植物的耐盐性。简要综述了AtNHX1基因及Na /H 逆向转运蛋白AtNHX1的特征,AtNHX1的耐盐机制以及植物耐盐基因工程改良等方面的研究进展。  相似文献   

3.
张宏飞  王锁民 《植物学报》2007,24(5):561-571
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na+吸收的机制和途径、Na+在植物体内的长距离转运以及细胞内Na+稳态平衡的研究进展进行了概述。参与植物Na+吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中, HKT是植物体内普遍存在的一类转运蛋白, 能够介导Na+的吸收, 其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白, 然而在典型的土壤Ca2+浓度下LCT1并不能发挥吸收Na+的功能。AKT家族的成员在高盐环境下可能也参与了Na+的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因, 但是NSCC作为植物吸收Na+的主要途径的观点已被广泛接受。SOS1和HKT参与了Na+在根部与植株地上部的长距离转运过程, 它们在木质部和韧皮部的Na+装载和卸载中发挥重要作用, 从而影响植物的抗盐性。另外, 由质膜Na+/H+逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2+结合蛋白SOS3组成的SOS复合体对细胞的Na+稳态具有重要的调节作用, 单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na+/H+逆向转运蛋白以及H+泵一起调节着细胞的Na+稳态。  相似文献   

4.
对从北美海蓬子中分离的Na+/H+逆向转运蛋白基因SbNHX1进行了耐盐性及功能结构域分析.利用套叠PCR技术去除SbNHX1基因C末端162个核苷酸,得到SbNHX1-C基因,然后将SbNHX1、SbNHX1-C和拟南芥Na+/H+ 逆向转运蛋白基因AtNHX1分别插入pET22b(+)表达载体,转化大肠杆菌B菌株,进行各种金属盐离子胁迫分析.结果表明,北美海蓬子Na+/H+ 逆向转运蛋白基因SbNHX1只对Na+ 、K+离子有抗性,且耐盐性强于拟南芥Na+/H+ 逆向转运蛋白基因AtNHX1.缺失C末端的SbNHX1-C基因对Na+、K+离子胁迫无抗性,说明北美海蓬子Na+/H+ 逆向转运蛋白基因SbNHX1的耐盐作用与该基因C末端1 353 bp至1 514 bp的序列密切相关.  相似文献   

5.
NaCl胁迫对盐芥质膜和液泡膜ATPase活性的影响   总被引:5,自引:1,他引:4  
以盐生植物盐芥和中生植物拟南芥幼苗为材料,研究了盐胁迫对它们叶片和根质膜、液泡膜H+-ATPase、Ca2+-ATPases和K+-ATPase活性以及H+-ATPase、Na+/H+ 逆向转运蛋白表达的影响.结果显示:在NaCl胁迫下,盐芥叶片和根质膜的H+-ATPase活性分别比对照显著升高41%~212%和35%~53%,液泡膜的H+-ATPase分别显著升高281%~373%和4%~38%,而拟南芥却比相应对照都显著降低;相同盐浓度胁迫下,盐芥叶片的H+-ATPase活性比根部高4~8倍,盐芥根也远高于拟南芥.在NaCl胁迫下,盐芥叶片和根的液泡膜H+-ATPase蛋白质β亚基含量变化与其酶活性变化趋势一致,质膜Na+/H+ 逆向转运蛋白的表达量与Na+含量变化趋势一致.盐胁迫下盐芥根中Ca2+-ATPases和K+-ATPase活性的增加与根中Ca2+和K+含量呈显著正相关.研究发现,在盐胁迫条件下,盐芥能有效增强H+-ATPase蛋白和Na+/H+逆向转运蛋白表达,显著提高其根系与叶片质膜和液泡膜的H+-ATPase、Ca2+-ATPase和K+-ATPase活性,维持细胞质中较高的Ca2+和K+水平,从而缓解盐胁迫的伤害,增强耐盐性.  相似文献   

6.
盐胁迫是限制植物生长发育的主要因素之一,植物Na+/H+反向转运蛋白可通过将Na+逆向转运出细胞外或将Na+区隔化于液泡中来抵制环境中过高的Na+浓度.植物中Na+/H+反向转运蛋白存在于细胞质膜和液泡膜上,现在已得到多种编码这些Na+/H+反向转运蛋白的基因,对其结构功能特性进行了大量研究,并发现将这些基因转入非抗盐植物中过量表达可提高转基因植物的抗盐性.概述了Na+/H+反向转运蛋白及其编码基因的最新研究进展.  相似文献   

7.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展   总被引:2,自引:0,他引:2  
安静  张荃 《生命科学》2006,18(3):273-278
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。  相似文献   

8.
新疆盐生植物车前PmNHX1基因的克隆及生物信息学分析   总被引:5,自引:0,他引:5  
盐分对植物的伤害主要是Na+引起的,而Na+/H+逆向运输蛋白催化Na+/H+逆向跨膜运输,从而使质膜上Na+运出细胞和液泡膜中的Na+区隔化。这是植物尤其是盐生植物抵御盐胁迫的主要方式之一。根据不同植物编码液泡膜逆向运输蛋白基因的保守序列,设计简并引物,采用RT-PCR和RACE技术,首次从新疆盐生植物车前(Plantago maritima)中克隆到Na+/H+逆向运输蛋白基因的cDNA全长2464 bp,命名为PmNHX1(GenBank登录号:EU233808),该基因编码区长为1 662bp,编码553个氨基酸,理论分子量为61.16kDa,等电点为7.22。数据分析结果显示,该蛋白质主要定位于液泡膜上,由12个序列保守的跨膜结构域组成,其中TM3跨膜结构域上存在“LFFIYLLPPI”-氨氯吡嗪咪结合域,并且该位点与Na+有竞争作用。PmNHX1逆向运输蛋白与其他植物逆向运输蛋白的氨基酸同源性为64%~80%。通过生物信息学方法对其理化性质和功能分析进行预测,这为进一步研究转耐盐基因PmNHX1及其功能鉴定奠定了基础。  相似文献   

9.
跨膜离子转运蛋白与植物耐盐的分子生物学   总被引:2,自引:0,他引:2  
植物抵御盐害的主要方式是增加Na 的外排、减少Na 的吸入和Na 的区隔化,而Na 的跨膜运输主要由质膜和液泡膜上的离子转运蛋白完成。对质膜和液泡膜跨膜离子转运蛋白包括K /Na 离子转运蛋白,Na /H 逆向转运蛋白以及液泡膜H -PPase的分子生物学研究及应用进展进行了综述。  相似文献   

10.
高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展   总被引:12,自引:1,他引:11  
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na 吸收的机制和途径、Na 在植物体内的长距离转运以及细胞内Na 稳态平衡的研究进展进行了概述。参与植物Na 吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中,HKT是植物体内普遍存在的一类转运蛋白,能够介导Na 的吸收,其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白,然而在典型的土壤Ca2 浓度下LCT1并不能发挥吸收Na 的功能。AKT家族的成员在高盐环境下可能也参与了Na 的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因,但是NSCC作为植物吸收Na 的主要途径的观点已被广泛接受。SOS1和HKT参与了Na 在根部与植株地上部的长距离转运过程,它们在木质部和韧皮部的Na 装载和卸载中发挥重要作用,从而影响植物的抗盐性。另外,由质膜Na /H 逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2 结合蛋白SOS3组成的SOS复合体对细胞的Na 稳态具有重要的调节作用,单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na /H 逆向转运蛋白以及H 泵一起调节着细胞的Na 稳态。  相似文献   

11.
12.
The Arabidopsis monovalent cation:proton antiporter-1 (CPA1) family includes eight members, AtNHX1-8. AtNHX1 and AtNHX7/SOS1 have been well characterized as tonoplast and plasma membrane Na+/H+ antiporters, respectively. The proteins AtNHX2-6 have been phylogenetically linked to AtNHX1, while AtNHX8 appears to be related to AtNHX7/SOS1. Here we report functional characterization of AtNHX8. AtNHX8 T-DNA insertion mutants are hypersensitive to lithium ions (Li+) relative to wild-type plants, but not to the other metal ions such as sodium (Na+), potassium (K+) and caesium (Cs+). AtNHX8 overexpression in a triple-deletion yeast mutant AXT3 that exhibits defective Na+/Li+ transport specifically suppresses sensitivity to Li+, but does not affect Na+ sensitivity. Likewise, AtNHX8 overexpression complemented sensitivity to Li+, but not Na+, in sos1-1 mutant seedlings, and increased Li+ tolerance of both the sos1-1 mutant and wild-type seedlings. Results of Li+ and K+ measurement of loss-of-function and gain-of-function mutants indicate that AtNHX8 may be responsible for Li+ extrusion, and may be able to maintain K+ acquisition and intracellular ion homeostasis. Subcellular localization of the AtNHX8-enhanced green fluorescent protein (EGFP) fusion protein suggested that AtNHX8 protein is targeted to the plasma membrane. Taken together, our findings suggest that AtNHX8 encodes a putative plasma membrane Li+/H+ antiporter that functions in Li detoxification and ion homeostasis in Arabidopsis.  相似文献   

13.
For plants growing in highly saline environments, accumulation of sodium in the cell cytoplasm leads to disruption of metabolic processes and reduced growth. Maintaining low levels of cytoplasmic sodium requires the coordinate regulation of transport proteins on numerous cellular membranes. Our previous studies have linked components of the Salt-Overly-Sensitive pathway (SOS1-3) to salt tolerance in Arabidopsis thaliana and demonstrated that the activity of the plasma membrane Na+/H+ exchanger (SOS1) is regulated by SOS2 (a protein kinase) and SOS3 (a calcium-binding protein). Current studies were undertaken to determine if the Na+/H+ exchanger in the vacuolar membrane (tonoplast) of Arabidopsis is also a target for the SOS regulatory pathway. Characterization of tonoplast Na+/H+ exchange demonstrated that it represents activity originating from the AtNHX proteins since it could be inhibited by 5-(N-methyl-N-isobutyl)amiloride and by anti-NHX1 antibodies. Transport activity was selective for sodium (apparent Km=31 mm) and electroneutral (one sodium ion for each proton). When compared with tonoplast Na+/H+-exchange activity in wild type, activity was significantly higher, greatly reduced, and unchanged in sos1, sos2, and sos3, respectively. Activated SOS2 protein added in vitro increased tonoplast Na+/H+-exchange activity in vesicles isolated from sos2 but did not have any effect on activity in vesicles isolated from wild type, sos1, or sos3. These results demonstrate that (i) the tonoplast Na+/H+ exchanger in Arabidopsis is a target of the SOS regulatory pathway, (ii) there are branches to the SOS pathway, and (iii) there may be coordinate regulation of the exchangers in the tonoplast and plasma membrane.  相似文献   

14.
15.
The function of vacuolar Na+/H+ antiporter(s) in plants has been studied primarily in the context of salinity tolerance. By facilitating the accumulation of Na+ away from the cytosol, plant cells can avert ion toxicity and also utilize vacuolar Na+ as osmoticum to maintain turgor. As many genes encoding these antiporters have been cloned from salt-sensitive plants, it is likely that they function in some capacity other than salinity tolerance. The wide expression pattern of Arabidopsis thaliana sodium proton exchanger 1 (AtNHX1) in this study supports this hypothesis. Here, we report the isolation of a T-DNA insertional mutant of AtNHX1, a vacuolar Na+/H+ antiporter in Arabidopsis. Vacuoles isolated from leaves of the nhx1 plants had a much lower Na+/H+ and K+/H+ exchange activity. nhx1 plants also showed an altered leaf development, with reduction in the frequency of large epidermal cells and a reduction in overall leaf area compared to wild-type plants. The overexpression of AtNHX1 in the nhx1 background complemented these phenotypes. In the presence of NaCl, nhx1 seedling establishment was impaired. These results place AtNHX1 as the dominant K+ and Na+/H+ antiporter in leaf vacuoles in Arabidopsis and also suggest that its contribution to ion homeostasis is important for not only salinity tolerance but development as well.  相似文献   

16.
17.
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.  相似文献   

18.
拟南芥液泡膜上的Na+/H+逆向转运蛋白是由 AtNHX1 基因编码的一种重要的植物耐盐性因子。 AtNHXS1 是利用DNA改组(DNA shuffling)技术对 AtNHX1 基因进行定向分子进化获得的新基因。利用农杆菌介导的叶盘法将该基因转入烟草中,经过潮霉素和PCR鉴定,得到了10个独立的转基因株系。对其中两个PCR阳性株系进行Southern blot 鉴定,确定 AtNHXS1 以单拷贝的形式成功地插入到烟草的基因组中。荧光定量PCR分析表明, AtNHXS1 基因可以利用烟草的转录体系正确转录。在盐处理下,随着盐浓度的提高,植株不同组织部位 AtNHXS1 基因的表达均有不同程度的提高,其中叶片上调趋势最明显。耐盐性试验结果表明,盐处理下,转基因烟草的长势明显优于野生型。400 mmol/L NaCl 处理下,野生型烟草完全死亡,转基因烟草生长受到抑制,但是仍然能够正常生长。研究结果表明, AtNHXS1 新基因能够显著提高烟草的耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号