首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
Jin Y  Lee H  Zeng SX  Dai MS  Lu H 《The EMBO journal》2003,22(23):6365-6377
The CDK inhibitor p21waf1/cip1 is degraded by a ubiquitin-independent proteolytic pathway. Here, we show that MDM2 mediates this degradation process. Overexpression of wild-type or ring finger-deleted, but not nuclear localization signal (NLS)-deleted, MDM2 decreased p21waf1/cip1 levels without ubiquitylating this protein and affecting its mRNA level in p53(-/-) cells. This decrease was reversed by the proteasome inhibitors MG132 and lactacystin, by p19(arf), and by small interfering RNA (siRNA) against MDM2. p21waf1/cip1 bound to MDM2 in vitro and in cells. The p21waf1/cip1-binding-defective mutant of MDM2 was unable to degrade p21waf1/cip1. MDM2 shortened the half-life of both exogenous and endogenous p21waf1/cip1 by 50% and led to the degradation of its lysine-free mutant. Consequently, MDM2 suppressed p21waf1/cip1-induced cell growth arrest of human p53(-/-) and p53(-/-)/Rb(-/-)cells. These results demonstrate that MDM2 directly inhibits p21waf1/cip1 function by reducing p21waf1/cip1 stability in a ubiquitin-independent fashion.  相似文献   

4.
Stimulation of transfected HepG2 cells (TFG2) with the alpha(1)-adrenergic agonist phenylephrine (PE) significantly activated p21(waf1/cip1) gene expression without affecting p53 gene expression. Northern blotting and reporter assay demonstrated that this induction was due to PE stimulation of p21(waf1/cip1) mRNA stability. To further define the underlying mechanism, we prepared a chloramphenicol acetyltransferase (CAT)-p21(waf1/cip1) 3'-untranslated region (3'-UTR) hybrid construct by inserting the 3'-UTR of p21(waf1/cip1) mRNA just downstream from the CAT coding sequence and transfected it into TFG2 cells. PE treatment enhanced the activity of this construct by 6-fold. Deletion analyses indicated that an AU-rich element (AURE) located between 553 to 625 within the p21(waf1/cip1) 3'-UTR was required for this induction. RNA gel shift assays demonstrated that this AURE bound an RNA-binding protein. This protein has been purified 5000-fold from PE-treated TFG2 cells by heparin-Sepharose and RNA affinity chromatography. SDS-polyacrylamide gel electrophoresis, UV cross-linking, and Northwestern analyses indicated the molecular mass of this protein as 24 and 52 kDa. Finally, PE treatment markedly enhanced this RNA-protein binding by a p42/44 mitogen-activated protein kinase-dependent mechanism. These data suggest that the AURE located between 553 and 625 within the p21(waf1/cip1) mRNA 3'-UTR, which binds an RNA-binding protein, is responsible for PE-induced p21(waf1/cip1) mRNA stability.  相似文献   

5.
CARM1 regulates proliferation of PC12 cells by methylating HuD   总被引:3,自引:1,他引:2       下载免费PDF全文
HuD is an RNA-binding protein that has been shown to induce neuronal differentiation by stabilizing labile mRNAs carrying AU-rich instability elements. Here, we show a novel mechanism of arginine methylation of HuD by coactivator-associated arginine methyltransferase 1 (CARM1) that affected mRNA turnover of p21cip1/waf1 mRNA in PC12 cells. CARM1 specifically methylated HuD in vitro and in vivo and colocalized with HuD in the cytoplasm. Inhibition of HuD methylation by CARM1 knockdown elongated the p21cip1/waf1 mRNA half-life and resulted in a slow growth rate and robust neuritogenesis in response to nerve growth factor (NGF). Methylation-resistant HuD bound more p21cip1/waf1 mRNA than did the wild type, and its overexpression upregulated p21cip1/waf1 protein expression. These results suggested that CARM1-methylated HuD maintains PC12 cells in the proliferative state by committing p21cip1/waf1 mRNA to its decay system. Since the methylated population of HuD was reduced in NGF-treated PC12 cells, downregulation of HuD methylation is a possible pathway through which NGF induces differentiation of PC12 cells.  相似文献   

6.
7.
8.
Iejimalide B, a marine macrolide, causes growth inhibition in a variety of cancer cell lines at nanomolar concentrations. We have investigated the effects of Iejimalide B on cell cycle kinetics and apoptosis in the p53+/AR+ LNCaP and p53-/AR- PC-3 prostate cancer cell lines. Iejimalide B, has a dose and time dependent effect on cell number (as measured by crystal violet assay) in both cell lines. In LNCaP cells Iejimalide B induces a dose dependent G0/G1 arrest and apoptosis at 48 h (as measured by Apo-BrdU staining). In contrast, Iejimalide B initially induces G0/G1 arrest followed by S phase arrest but does not induce apoptosis in PC-3 cells. qPCR and Western analysis suggests that Iejimalide B modulates the steady state level of many gene products associated with cell cycle (including cyclins D, E, and B and p21(waf1/cip1)) and cell death (including survivin, p21B and BNIP3L) in LNCaP cells. In PC-3 cells Iejimalide B induces the expression of p21(waf1/cip1), down regulates the expression of cyclin A, and does not modulate the expression of the genes associated with cell death. Comparison of the effects of Iejimalide B on the two cell lines suggests that Iejimalide B induces cell cycle arrest by two different mechanisms and that the induction of apoptosis in LNCaP cells is p53-dependent.  相似文献   

9.
Pretreatment of HepG2 and H1299 cells with chloramphenicol rendered the cells resistant to mitomycin-induced apoptosis. Both mitomycin-induced caspase 3 activity and PARP activation were also inhibited. The mitochondrial DNA-encoded Cox I protein, but not nuclear-encoded proteins, was down-regulated in chloramphenicol-treated cells. Cellular levels of the p21(waf1/cip1) protein and p21(waf1/cip1) mRNA were increased through a p53-independent pathway, possibly because of the stabilization of p21(waf1/cip1) mRNA in chloramphenicol-treated cells. The p21(waf1/cip1) was redistributed from the perinuclear region to the cytoplasm and co-localized with mitochondrial marker protein. Several morphological changes and activation of the senescence-associated biomarker, SA beta-galactosidase, were observed in these cells. Both p21(waf1/cip1) antisense and small interfering RNA could restore apoptotic-associated caspase 3 activity, PARP activation, and sensitivity to mitomycin-induced apoptosis. Similar effects were seen with other antibiotics that inhibit mitochondrial translation, including minocycline, doxycycline, and clindamycin. These findings suggested that mitochondrial stress causes resistance to apoptosis through a p21-dependent pathway.  相似文献   

10.
研究 CDKs和 CKIs在调节胃癌细胞周期进程中的作用表明 ,全反式视黄酸 ( ATRA)通过诱导细胞滞留在 G1/G0 期而抑制胃癌细胞生长 .Western blot分析显示 ,ATRA可上调 p2 1 waf1/ cip1的表达 ,而抑制 p1 6ink4 的表达 .免疫沉淀及活性测定表明 ,CDK2 激酶活性可被 ATRA抑制 ,而CDK4 活性先被诱导上升 ,2 4 h后逐渐下降 .另外 ,ATRA可以调节 Rb蛋白的磷酸化和 c- myc蛋白的表达 .由此证实 ,ATRA诱导胃癌细胞滞留于 G1/G0 期与其上调 p2 1 waf1/ cip1的表达和抑制CDK2 和 CDK4 激酶活性 ,进而抑制 Rb蛋白的磷酸化和 c- myc的表达有关 . Rb蛋白是 ATRA抑制胃癌细胞生长的下游调节因子 .另外 ,p1 6ink4 的功能在胃癌细胞中可能丧失 .  相似文献   

11.
12.
13.
14.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates multiple signaling pathways. Two regions, C-terminal-activating region 1 (CTAR1) and CTAR2, have been identified within the cytoplasmic carboxy terminal domain that activates NF-kappaB. CTAR2 activates the canonical NF-kappaB pathway, which includes p50/p65 complexes. CTAR1 can activate both the canonical and noncanonical pathways to produce multiple distinct NF-kappaB dimers, including p52/p50, p52/p65, and p50/p50. CTAR1 also uniquely upregulates the epidermal growth factor receptor (EGFR) in epithelial cells. Increased p50-Bcl-3 complexes have been detected by chromatin precipitation on the NF-kappaB consensus motifs within the egfr promoter in CTAR1-expressing epithelial cells and nasopharyngeal carcinoma cells. In this study, the mechanism responsible for the increase in Bcl-3 has been further investigated. The data indicate that LMP1-CTAR1 induces Bcl-3 mRNA and increases the nuclear translocation of both Bcl-3 and p50. LMP1-CTAR1 constitutively activates STAT3, and this activation was not due to the induction of interleukin 6 (IL-6). In LMP1-CTAR1-expressing cells, increased levels of activated STAT3 were detected by chromatin immunoprecipitation on STAT-binding sites located within both the promoter and the second intron of Bcl-3. A STAT3 inhibitor significantly reduced the activation of STAT3, as well as the CTAR1-mediated upregulation of Bcl-3 and EGFR. These data suggest that LMP1 activates distinct forms of NF-kappaB through multiple pathways. In addition to activating the canonical and noncanonical pathways, LMP1-CTAR1 constitutively activates STAT3 and increases Bcl-3. The increased nuclear Bcl-3 and p50 homodimer complexes positively regulate EGFR expression. These results indicate that LMP1 likely regulates distinct cellular genes by activating specific NF-kappaB pathways.  相似文献   

15.
The magnitude of gut adaptation is a decisive factor in determining whether patients are able to live independent of parenteral nutrition after massive small bowel loss. We previously established that the cyclin-dependent kinase inhibitor (CDKI) p21(waf1/cip1) is necessary for enterocyte proliferation and a normal adaptation response. In the present study, we have further elucidated the role of this CDKI in the context of p27(kip1), another member of the Cip/Kip CDKI family. Small bowel resections (SBRs) or sham operations were performed in control (C57/BL6), p21(waf1/cip1)-null, p27(kip1)-null, and p21(waf1/cip1)/p27(kip1) double-null mice. Morphological (villus height/crypt depth) alterations in the mucosa, the kinetics of enterocyte turnover (rates of enterocyte proliferation and apoptosis), and the protein expression of various cell cycle-regulatory proteins were recorded at various postoperative times. Enterocyte compartment-specific mRNA expression was investigated using laser capture microdissection. Resection-induced adaptation in control mice coincided with increased protein expression of p21(waf1/cip1) and decreased p27(kip1) within 3 days postoperatively. Identical changes in mRNA expression were detected in crypt but not in villus enterocytes. Adaptation occurred normally in control and p27(kip1)-null mice; however, mice deficient in both p21(waf1/cip1) and p27(kip1) failed to increase baseline rates of enterocyte proliferation and adaptation. The expression of p21(waf1/cip1) protein and mRNA in the proliferative crypt compartment is necessary for resection-induced enterocyte proliferation and adaptation. The finding that deficient expression of p27(kip1) does not affect adaptation suggests that these similar CDKI family members display distinctive cellular functions during the complex process of intestinal adaptation.  相似文献   

16.
17.
The c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway is activated by numerous cellular stresses. Although it has been implicated in mediating apoptosis and growth factor signaling, its role in regulating cell growth is not yet clear. Here, the influence of JNK on basal (unstimulated) growth of human tumor glioblastoma T98G cells was investigated using highly specific JNK antisense oligonucleotides to inhibit JNK expression. Transient depletion of either JNK1 or JNK2 suppressed cell growth associated with an inhibition of DNA synthesis and cell cycle arrest in S phase. The growth-inhibitory potency of JNK2 antisense ((JNK)2 IC(50) = 0.14 micrometer) was greater than that of JNK1 antisense ((JNK)1 IC(50) = 0.37 micrometer), suggesting that JNK2 plays a dominant role in regulating growth of T98G cells. Indeed, JNK2 antisense-treated populations exhibited greater inhibition of DNA synthesis and accumulation of S-phase cells than did the JNK1 antisense-treated cultures, with a significant proportion of these cells detaching from the tissue culture plate. JNK2 (but not JNK1) antisense-treated cultures exhibited marked elevation in the expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1) accompanied by inhibition of Cdk2/Cdc2 kinase activities. Taken together, these results indicate that JNK is required for growth of T98G cells in nonstress conditions and that p21(cip1/waf1) may contribute to the sustained growth arrest of JNK2-depleted T98G cultures.  相似文献   

18.
Human papillomavirus (HPV) infection is implicated as an important risk factor in the development of head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycle proteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was to evaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpression in heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas. The HPV DNA expression was detected using an in situ hybridization method and immunoexpression of p16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1/ /cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, although only the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclin D1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increased immunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 in the HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play an important role in cell cycle dysregulation.  相似文献   

19.
20.
In normal human fibroblasts, beta-carotene induces a cell-cycle delay in the G1 phase independent of its provitamin A activity via a mechanism not yet elucidated. In this study we provide biochemical evidence showing that delayed progression through the G1 phase occurs concomitantly with: an increase in both nuclear-bound and total p21waf1/cip1 protein levels; an increase in the amount of p21waf1/cip1 associated with cdk4; the inhibition of cyclin D1-associated cdk4 kinase activity; and a reduction in the levels of hyperphosphorylated forms of retinoblastoma protein, and particularly, in phosphorylated Ser780. The role of p21waf1/cip1 in the antiproliferative effect of the carotenoid was further supported by genetic evidence that neither changes in cell-cycle progression nor in the phosphorylation status of retinoblastoma protein were observed in p21waf1/cip1-deficient human fibroblasts treated with beta-carotene. These results clearly demonstrate that p21waf1/cip1 is involved directly in the molecular pathway by which beta-carotene inhibits cell-cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号