首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The cultivated husk tomato (Physalis ixocarpa) (2n = 2x = 24) is native from Mexico and Central America and shows a wide genetic variation. Presently, it is the fourth horticultural crop in cultivation surface in Mexico. The working team of this research previously developed an autotetraploid population by using colchicine. The objectives of the present work were to analyze the ploidy level and meiotic behavior of the subsequent generations (C3, C4, C5, C6) from the original (C2) composed only by plants with the duplicated genome from the Rendidora cultivar, and to determine pollen viability. As a diploid control the cultivar Rendidora of P. ixocarpa was used. Ploidy level was determined by flow citometry and meiotic analysis. For the meiotic study, the microsporocytes were prepared by the squash method, stained with carmin and analyzed in diakinesis. Pollen viability was evaluated through 0.01% Buffalo Black staining. The tetraploid condition prevailed through four cross-pollinating generations, maintaining a constant chromosome number 2n = 4x = 48. In diakinesis, the chromosomes of the diploid cultivar were associated into bivalents, whereas in tetraploid plants the chromosomes associated into univalents, bivalents and trivalents. Highly significant differences in bivalent pairing were detected between autotetraploid plants and between generations. Pollen viability did not show significant differences between generations and allowed reproduction. These results indicate that it is possible to develop an autotetraploid cultivar, because the polyploid state is naturally maintained and the plants are fertile. Furthermore, given the differences in bivalent pairing between plants and generations, a response to selection toward meiotic stability is expected.  相似文献   

2.
Summary The Giemsa C-banding technique was used to identify individual meiotic and somatic chromosomes in 21 monosomic lines of Avena byzantina C. Koch cv Kanota (genome designation AACCDD). The hexaploid complement is composed of three sets of seven chromosome pairs. The heterochromatin in the putative diploid progenitors is located at the telomeres (genome A), at the centromeric and interstitial regions (genome C), or more evenly spread throughout the set (genome D). Comparisons based on C-banding between A. byzantina and its diploid progenitor species allowed us to allocate individual chromosomes into specific genomes. The C-banding technique may be useful for interspecific chromosome pairing analyses. Nucleolar activity and competition were studied using a silver-staining procedure. Only three chromosome pairs showed nucleolar organizer regions, thus indicating that nucleolar competition occurs naturally in hexaploid oats.  相似文献   

3.
A. Davies  G. Jenkins  H. Rees 《Genetica》1990,82(2):103-110
The chromosomes of the two closely related diploid species, Gibasis consobrina and G. karwinskyana (Commelinaceae; 2n=2x=10), are morphologically alike, yet form few chiasmate associations at metaphase I in the f1 hybrid. During meiotic prophase, however, synaptonemal complexes join the majority of the chromosomes of the complement in complex multiple pairing configurations. The F1 hybrid between different tetraploid genotypes of the same two species similarly forms multivalents during meiotic prophase, which are subsequently eliminated in favour of strictly homologous bivalents before metaphase I. One quadrivalent comprising interchange chromosomes inherited from one of the parents, usually persists to first metaphase. Evidently the resolution of multivalents to bivalents at first metaphase, which accounts for diploidisation, is not attributable to the elimination of multivalents per se, but of multivalents comprising chromosomes of limited homology.  相似文献   

4.
A spontaneous tetraploid/diploid chimera involving meiotic cells of a male individual of Euchorthippus pulvinatus gallicus was heterozygous for the C-banding pattern in chromosome pair 8. This allowed the study of the possible existence of competition in meiotic pairing between identical and homologous but not-identical chromosomes. The results suggest the existence of such a competition. An excess of bivalents formed by identical chromosomes was observed. It is suggested that during the pairing process slight specificity or activity differences between chromosomes with a high degree of resemblance would be responsible for the pairing preferences found.  相似文献   

5.
Nuclear divisions of carpospores, conchocelis and conchospores of Porphyra yezoensis, P. haitanensis, P. katadai var. hemiphylla and P. oligospermatangia from China were investigated. The observations showed diploid chromosome numbers of 2n = 6 for P. yezoensis and P. oligospermatangia, and 2n = 10 for P. haitanensis and P. katadai var. hemiphylla. For all four species, somatic pairing of chromosome sets was observed in late prophase. Sister chromosomes separated at anaphase as mitosis took place in carpospores, conchocelis filamentous cells, conchosporangial branch cells and sporangial cells (conchospore formation). Chromosome configurations of tetrad and ring-shaped in conchospore germination were observed, demonstrating the occurrence of meiosis. The characteristics of diploid nuclear division in 2n = 6 species are the same as those of 2n = 10 species. The influence of somatic pairing on nuclear division of diploid cells in Porphyra was discussed.  相似文献   

6.
The genus Orthophytum Beer comprises 53 species, all narrow endemics to south-eastern and north-eastern Brazil. In this study we present meiotic and mitotic chromosome numbers of 12 species of this important genus in Bromeliaceae. For six of these taxa we are reporting the first cytogenetic study. Orthophytum albopictum, O. amoenum and O. burle-marxii presented 2n = 100 chromosomes and O. hatschbachii, O. mucugense, O. vagans, O. supthutii, O. zanonii and O. ophiuroides showed 2n = 50 chromosomes. These results are consistent with the proposed basic number of x = 25 for Bromeliaceae family. In the genus Orthophytum, polyploidy seems to play an important role in chromosome evolution associated with habitat differentiation among diploid and polyploid species.  相似文献   

7.
8.
The largely Mexican genus Echeveria is characterized by an extensive series of dysploid chromosome numbers, with every gametic number from 12 to 34 known in at least one species. Within this nearly three-fold range of numbers, the boundary between diploidy and tetraploidy is not immediately apparent. However, species of Echeveria can be hybridized in an extraordinary number of combinations, both among themselves and with related genera, and study of the morphology of the hybrids and the pairing of their chromosomes provides information that helps to identify the ploidy of the parents. This paper reports observations from study of 80 hybrids between E. ciliata (n = 25) and 73 other species and/or cytotypes. Hybrids between E. ciliata and definite diploids are all nicely intermediate morphologically, whatever the chromosome numbers. In these same hybrids, most chromosomes become involved in pairing at meiosis, and the number of paired elements (bivalents and multivalents) approaches or equals, but never exceeds, the number of chromosomes received from the lower-numbered parent. In most cells, relatively few univalents are present, sometimes none. These observations are considered to indicate that all paired elements include at least one chromosome from each parent and therefore that pairing occurs between chromosomes of different parents only (allosyndesis). Since none of the 25 gametic chromosomes of E. ciliata is able to pair with any other, although they do pair very extensively with chromosomes from many other species having a wide range of numbers, E. ciliata is considered to be diploid in spite of its relatively high chromosome number. On the other hand, hybrids of E. ciliata with definite polyploids resemble the latter much more closely in their morphology, and at meiosis most or all pairing occurs by autosyndesis between chromosomes received from the polyploid parent, while the chromosomes from E. ciliata generally remain unpaired. In these respects most, but not all, species of Echeveria having as many as 34 gametic chromosomes have the same properties as E. ciliata and also are considered to be diploid. The ancestral chromosome number in the genus is not clear, but it is probably near the upper end of the series of dysploid numbers.  相似文献   

9.
Species relationships in the genus Tulipa   总被引:1,自引:0,他引:1  
The relationships of diploid and polyploid species belonging to the sub-section Eriostemones of the genus Tulipa have been investigated from the point of view of chromosome morphology, relative DNA values, and meiotic pairing properties. Karyotype morphology is basically the same for all species and eight principal chromosome classes can be distinguished. The range of DNA values obtained by Feulgen cytophotometry for the diploid species is relatively small and provides little assistance in ascertaining the pattern of ploidy involved in the evolution of the group. Partial asynapsis and reverse loop pairing in several of the diploids at pachytene reveals a degree of structural differentiation which may be the outcome of hybridity between species. Significantly, these anomalies are rarely encountered at the equivalent tetraploid levels and a scheme is proposed to account for this behaviour.  相似文献   

10.
A compilation of the diploid chromosome numbers and karyotype formulae of 30 species of the genus Pimelia from Morocco, Iberian Peninsula, Balearic and Canary Islands is presented. All species show a conservation of diploid numbers and karyotype formulae 2n = 18 (8 + Xyp) except for Pimelia cribra, Pimelia elevata, and Pimelia interjecta 2n = 20 (9 + Xyp) and Pimelia sparsa sparsa 2n = 18 (8 + neoXY). The ancestral state for the genus Pimelia is suggested to be 2n = 18 (8 + Xyp) in accordance with a previously described phylogeny of these species based on mitochondrial and nuclear DNA. The derived state 2n = 20 (9 + Xyp) is present in a monophyletic clade, which originated about 2.5–5 Mya. The male meiotic formula 8 + neoXY found in P. sparsa sparsa seems to have originated by the reorganization of the Xyp pair resulting in two homomorphic sexual chromosomes and the lost of most of the heterochromatin from the former X chromosome. In all chromosomes C‐banding revealed conspicuous pericentromeric heterochromatic blocks, except in the Y chromosome in most of the species, and in situ hybridization of satellite DNA probes revealed the correspondence between heterochromatin and satellite DNA. Finally, the possible role of heterochromatin and satellite DNA is discussed in relation to the uniformity of the Tenebrionidae α‐karyology.  相似文献   

11.
The relationship between diploid and triploid forms of Colocasia antiquorum Schott. was assessed through comparative meiotic and pollen mitotic studies. Owing to poor spreading of the chromosomes of both materials, karyological observations on pachytene nuclei were limited to a few chromosomes. Among the two nucleolar chromosomes and a metacentric, telochromomere-bearing chromosome of the diploid, the latter and one of the nucleolar chromosomes characterized by a heteropycnotic short arm were identified in both bivalent and trivalent associations in the triploid. The homologues in these cases were homomorphic and intimately paired. Two types of heteromorphic bivalents exhibiting partial pairing of homomorphic segments were also recorded in the triploid. Among the 14 bivalents of the diploid at diakinesis, two were nucleolus-associated. In the triploid, chromosomal associations at diakinesis included trivalents (2 to 9), bivalents and univalents, and the chiasma frequency per paired chromosome was lower than in the diploids. In 21.6 percent of the PMCs at this stage intragenomic pairing of one or two chromosomes was observed. Post-diakinesis stages in the diploid were regular while in the triploid they were marked by various irregularities in a majority of the cells. However, fertility (stainability), size and divisional frequency of pollen in both materials were remarkably similar. Chromosome numbers in pollen nuclei in the triploid ranged from 8 to 25. Based on these data an autopolyploid origin for the triploid Colocasia and a lower base number than the gametic chromosome number for this genus are advanced.  相似文献   

12.
Nine species of the genus Neodendrocoelum from Lake Ohrid, five from sublittoral and four from littoral regions, have a diploid chromosome complement 2n=32 and show a marked resemblance in their karyotypes, comprising four large pairs (group L), seven medium pairs (group M) and five small pairs (group S). Polymorphism has only been found in groups S. Variations in chiasma frequency in the species of this genus indicate that their meiotic systems are different. In these species the number of quadrivalent were found to be different in metaphase I. The process of speciation of this genus was manifested in the diploidization of autotetraploid species.  相似文献   

13.
The 19 spatially distinct chromosomal units at first meiotic metaphase in sporophytically diploid species of Sphagnum have usually been considered to be bivalents, but one investigator (Sorsa, 1956) has interpreted them as chromosomes from dissociated bivalents and meiosis as post-reductional. The present studies on diploid S. squarrosum (Pers.) Crome establish the chromosome number on the basis of the following evidence: there are in addition to m-chromosomes, 19 pairs of chromosomes in early prophase, 19 bivalents at diakinesis, 19 chromosomes in each of the two sets at second metaphase, 19 daughter chromosomes in each of the four sets at late second anaphase, and 19 chromosomes in gametophytic mitoses. The 19 bodies at first meiotic metaphase in diploid species are true bivalents in loose secondary association, which has led to their erroneous interpretation as chromosomes of dissociated bivalents. The gametic chromosome number in sporophytically diploid Sphagnum is therefore, without doubt, n = 19, and this evidence negates the claim for post-reduction in Sphagnum.  相似文献   

14.
Tu Y  Sun J  Liu Y  Ge X  Zhao Z  Yao X  Li Z 《Plant cell reports》2008,27(5):873-883
Intertribal somatic hybrids of Raphanus sativus (2n = 18, RR) and Brassica rapa spp. chinensis (2n = 20, AA) with the dye and medicinal plant Isatis indigotica (2n = 14, I I) were firstly obtained by polyethylene glycol-induced symmetric fusions of mesophyll protoplasts. One mature hybrid with R. sativus established in field had intermediate morphology but was totally sterile. It had the expected chromosome number (2n = 32, RRI I) and parental chromosomes were distinguished by genomic in situ hybridization (GISH) analysis, and these chromosomes were paired as 16 bivalents in pollen mother cells (PMCs) at diakinesis and mainly segregated equally as 16:16 at anaphase I (A I), but the meiotic disturbance in second division was obvious. Five mature hybrids with B. rapa established in field were morphologically intermediate but showed some differences in phenotypic traits and fertility, two were partially fertile. Cytological and GISH investigations revealed that these hybrids had 2n = 48 with AAIIII complement and their PMCs showed normal pairing of 24 bivalents and mainly equal segregation 24:24, but meiotic abnormalities of lagging chromosomes and micronuclei appeared frequently during second divisions. AFLP analysis showed that all of these hybrids had mainly the DNA banding pattern from the addition of two parents plus some alterations. Some hybrids should be used for the genetic improvement of crops and the dye and medicinal plant.  相似文献   

15.
F. Zaffagnini 《Chromosoma》1973,40(4):443-450
Both parasitic and free-living females of a calf strain of Strongyloides papillosus have a chromosome number of 2n=4. Both forms reproduce by diploid parthenogenesis. Oocytes of parasitic females undergo only one homeotypic maturation division without homologous chromosome pairing (mitotic parthenogenesis). Oocytes of free-living females show normal pairing and disjunction of the homologous chromosomes, but only one diploid polar body is expelled (meiotic parthenogenesis). Reconstitution of the diploid chromosome number occurs by separation of the two sister chromatids of each univalent during or after anaphase I.This investigation was supported by the Consiglio Nazionale delle Ricerche (C.N.R.) of Italy.  相似文献   

16.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

17.
Phylogenetic relationships and identification of species of the genus Hypostomus is still unclear. Considering this, cytogenetics may prove itself as an important tool in understanding the systematic of this genus. Reviews in Hypostomus indicate that the diploid number ranges from 54 to 84 chromosomes, and the increase in diploid number has been associated to higher percentages of subtelocentric and acrocentric chromosomes. Although there is a high number of species in the genus, there are relatively few papers concerning Hypostomus cytogenetics, and most of the data is published as grey literature. With the aim to understand the chromosomal evolution in the genus (correlation between diploid number x chromosomes types), H. ancistroides and H. topavae from the Piquiri River, Upper Paraná River basin, were cytogenetically analyzed, and the diploid number observed was 68 and 80 chromosomes, respectively. Additional data on the diploid number and chromosome formulae was compiled from papers (27 analyses) and abstracts from grey literature (77 analyses). Our analysis shows no correlation between chromosome numbers and percentages of subtelocentric and acrocentric chromosomes for most of the species, since there is considerable variation between these percentages even between species with the same diploid number, indicating that the proportion of chromosome types is not always associated to diploid numbers.  相似文献   

18.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

19.
Karyotypes and cytological details of gametogenesis were analysed for Allocreadium handiai and A. fasciatusi. Mitotic plates studied in squashes of testes, ovary, eggs and intramolluscan stages showed that A. handiai is a diploid (2n = 14) with six pairs of submetacentrics and one pair of subtelocentrics. Total chromosome length of the diploid complement was 86.57 μm, the largest chromosome measured 8.87 μm (10.24% total chromosome length [TCL]) and the smallest was 2.83 μm (3.28% TCL). Squashes of testes revealed the presence of all stages of spermatogenesis with spermatocytes in various stages of meiotic activity and spermatids containing bundles of spermatozoa. Stages of development of the ovum conclusively proved that reproduction takes place by amphimixis. Mitotic figures of A. fasciatusi, on the other hand, revealed that it is a triploid (3n = 21) with three metacentrics, 12 submetacentrics and six subtelocentrics. The mean total chromosome length of the triploid complement was 137.54 μm. The largest chromosome measured 10.37 μm (7.54% TCL) and the smallest measured 2.67 μm (1.94% TCL). Spermatogenesis was abortive with no evidence of synaptic pairing and spermatozoa were not produced. Eggs remained unfertilized and reproduction was achieved by parthenogenesis which is of mitotic type. The karyotypes of the two species differed not only in the ploidy level but also in the centromeric indexes of certain chromosomes.  相似文献   

20.
Two contrasting genotypes of Lolium perenne and two inbred lines of L. temulentum were examined with regard to their effect on homoeologous chromosome pairing in interspecific hybrids derived from them. Substantial differences in chiasma frequency were observed between the hybrid progeny of the different parental types. The background genes involved were found to operate in the presence and in the absence of B chromosomes. The combination of A chromosome genes present in some of the 0B hybrids was found to result in a considerable suppression of chiasma formation at the diploid level, and the restriction of pairing to strict homologues at the tetraploid level. It appears, therefore, that genes are present within the diploid species of the genus Lolium which are capable of performing a function similar to that of the Ph locus in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号