首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative splicing of pre-mRNAs allows multicellular organisms to create a huge diversity of proteomes from a finite number of genes. But extensive studies in vitro or in cultured cells have not fully explained the regulation mechanisms of tissue-specific or developmentally regulated alternative splicing in living organisms. Here we report a transgenic reporter system that allows visualization of expression profiles of mutually exclusive exons in Caenorhabditis elegans. Reporters for egl-15 exons 5A and 5B showed tissue-specific profiles, and we isolated mutants defective in the tissue specificity. We identified alternative-splicing defective-1 (asd-1), encoding a new RNA-binding protein of the evolutionarily conserved Fox-1 family, as a regulator of the egl-15 reporter. Furthermore, an asd-1;fox-1 double mutant was defective in the expression of endogenous egl-15 (5A) and phenocopied egl-15 (5A) mutant. This transgenic reporter system can be a powerful experimental tool for the comprehensive study of expression profiles and regulation mechanisms of alternative splicing in metazoans.  相似文献   

2.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

3.
4.
5.
Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1γ gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing.  相似文献   

6.
Tissue-specific alternative pre-mRNA splicing is essential for increasing diversity of functionally different gene products. In Caenorhabditis elegans, UNC-60A and UNC-60B, nonmuscle and muscle isoforms of actin depolymerizing factor (ADF)/cofilin, are expressed by alternative splicing of unc-60 and regulate distinct actin-dependent developmental processes. We report that SUP-12, a member of a new family of RNA recognition motif (RRM) proteins, including SEB-4, regulates muscle-specific splicing of unc-60. In sup-12 mutants, expression of UNC-60B is decreased, whereas UNC-60A is up-regulated in muscle. sup-12 mutations strongly suppress muscle defects in unc-60B mutants by allowing expression of UNC-60A in muscle that can substitute for UNC-60B, thus unmasking their functional redundancy. SUP-12 is expressed in muscle and localized to the nuclei in a speckled pattern. The RRM domain of SUP-12 binds to several sites of the unc-60 pre-mRNA including the UG repeats near the 3'-splice site in the first intron. Our results suggest that SUP-12 is a novel tissue-specific splicing factor and regulates functional redundancy among ADF/cofilin isoforms.  相似文献   

7.
The splicing factor SUP-12 from Caenorhabditis elegans binds to regulatory RNA elements in pre-mRNA in order to generate tissue-specific alternative splicing for genes such as the fibroblast growth factor receptor egl-15. In nematode muscle cells, SUP-12 promotes the use of a mutually exclusive exon to impart variant binding specificity to the EGL-15 extracellular protein domain. Here we report the side chain and backbone 1H, 13C and 15N chemical shift assignments for the bacterially expressed RNA recognition motif domain from SUP-12, both in isolation as well as bound to a short RNA derived from the intron sequence between exon 4 and exon 5B of egl-15. Comparison of protein chemical shift values for both the backbone and side chain nuclei, coupled with secondary chemical shift analysis, reveal initial details of the RNA recognition.  相似文献   

8.
Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.  相似文献   

9.
10.
Precise and robust regulation of alternative splicing provides cells with an essential means of gene expression control. However, the mechanisms that ensure the tight control of tissue-specific alternative splicing are not well understood. It has been demonstrated that robust regulation often results from the contributions of multiple factors to one particular splicing pathway. We report here a novel strategy used by a single splicing regulator that blocks the formation of two distinct prespliceosome complexes to achieve efficient regulation. Fox-1/Fox-2 proteins, potent regulators of alternative splicing in the heart, skeletal muscle, and brain, repress calcitonin-specific splicing of the calcitonin/CGRP pre-mRNA. Using biochemical analysis, we found that Fox-1/Fox-2 proteins block prespliceosome complex formation at two distinct steps through binding to two functionally important UGCAUG elements. First, Fox-1/Fox-2 proteins bind to the intronic site to inhibit SF1-dependent E′ complex formation. Second, these proteins bind to the exonic site to block the transition of E′ complex that escaped the control of the intronic site to E complex. These studies provide evidence for the first example of regulated E′ complex formation. The two-step repression of presplicing complexes by a single regulator provides a powerful and accurate regulatory strategy.  相似文献   

11.
Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue-specific isoforms of a target gene that expedites a highly conserved signaling pathway.  相似文献   

12.
13.
14.
NeuN is an antigen detected in the nucleus of neurons in a wide range of vertebrates and so it is widely used as a tool for detecting neuronal cells. NeuN has been recently identified as Fox-3, a new member of the Fox-1 gene family of splicing factors. The predominant localization of NeuN/Fox-3 to neuronal nuclei and its role in splicing pose the question of the nuclear compartmentalization of such a protein. Here we provide evidence that NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix and a reliable marker of nuclear speckles in neurons.

Structured summary

MINT-7890176: Fox-3 (uniprotkb:B7ZC13) and Splicing factor SC35 (uniprotkb:Q6PDU1) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

15.
16.
17.
18.
The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species.  相似文献   

19.
Although multiple regulatory elements and protein factors are known to regulate the non-neuronal pathway of alternative processing of the calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA, the mechanisms controlling the neuron-specific pathway have remained elusive. Here we report the identification of Fox-1 and Fox-2 proteins as novel regulators that mediate the neuron-specific splicing pattern. Fox-1 and Fox-2 proteins function to repress exon 4 inclusion, and this effect depends on two UGCAUG elements surrounding the 3' splice site of the calcitonin-specific exon 4. In neuron-like cells, mutation of a subset of UGCAUG elements promotes the non-neuronal pattern in which exon 4 is included. In HeLa cells, overexpression of Fox-1 or Fox-2 protein decreases exon 4 inclusion. Fox-1 and Fox-2 proteins interact with the UGCAUG elements specifically and regulate splicing by blocking U2AF(65) binding to the 3' splice site upstream of exon 4. We further investigated the inter-relationship between the UGCAUG silencer elements and the previously identified intronic and exonic splicing regulatory elements and found that exon 4 is regulated by an intricate balance of positive and negative regulation. These results define a critical role for Fox-1 and Fox-2 proteins in exon 4 inclusion of calcitonin/CGRP pre-mRNA and establish a regulatory network that controls the fate of exon 4.  相似文献   

20.
Tissue development requires the expression of a regulated subset of genes, and it is becoming clear that the process of alternative splicing also plays an important role in the production of necessary tissue-specific isoforms. However, only a few of these tissue-specific splicing factors in mammals have so far been discovered. One of these factors is the RNA-binding protein RBM24 which has been recently identified as a major regulator of alternative splicing in cardiac and skeletal muscle development. The RBM24 protein contains an RNA recognition motif (RRM) domain that presumably mediates the binding to target pre-mRNA required for regulation of the splicing patterns. Here we report 1H, 15N and 13C chemical shift assignments of the backbone and sidechain atoms for the RRM domain from human RBM24. Secondary chemical shift analysis and relaxation measurement confirm the canonical architecture of the RRM domain. The data will allow for atomic level studies aimed at understanding splicing regulation of target genes in heart and muscle development and investigation into a separate role of RBM24 in modulating mRNA stability of genes involved in the p53 tumor suppressor pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号