首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25-33) and the axolotl (stages 28-35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Whole mounts and cross-sections of embryos from three species of teleost fish were immunostained with the HNK-1 monoclonal antibody, which recognizes an epitope on migrating neural crest cells. A similar distribution and migration was found in all three species. The crest cells in the head express the HNK-1 epitope after they have segregated from the neural keel. The truncal neural crest cells begin to express the epitope while they still reside in the dorsal region of the neural keel; this has not been observed in other vertebrates. The cephalic and anterior truncal neural crest cells migrate under the ectoderm; the cephalic cells then enter into the gill arches and the anterior truncal cells into the mesentery of the digestive tract where they cease migration. These cephalic and anterior trunk pathways are similar to those described in Xenopus and chick. The neural crest cells of the trunk, after segregation, accumulate in the dorsal wedges between the somites, however, unlike in chick and rat, they do not migrate in the anterior halves of the somites but predominantly between the neural tube and the somites, the major pathway observed in carp and amphibians; some cells migrate over the somites. The HNK-1 staining of whole-mount embryos revealed a structure resembling the Rohon-Beard and extramedullary cells, the primary sensory system in amphibians. Such a system has not been described in fish.  相似文献   

3.
Peanut agglutinin (PNA) receptors are expressed in the caudal halves of sclerotomes in chick embryos after 3 days of incubation (stages 19–20 of Hamburger & Hamilton). The neural crest cells forming dorsal root ganglia (DRG) and motor nerves appear to avoid PNA positive regions and concentrate into rostral halves of sclerotomes. To investigate the role of PNA receptors in gangliogenesis and nerve growth, we examined PNA binding ability in quail sclerotomes and in chick-quail chimeric embryos made by transplanting quail somites to chick embryos, comparing the development of DRG, motor nerves and sclerotomes. PNA did not bind to any part of the somites of 4.5-day quail embryos, although dorsal root ganglia and motor nerves appeared only in the rostral halves of sclerotomes as in chick embryos. Moreover, in spite of no PNA binding ability of the transplanted quail somite in 4.5-day chick-quail chimeric embryos, DRG and motor nerves derived from chick tissues appeared only in the rostral halves of the sclerotomes derived from these somites. Thus, both quail and chick neural crest cells and motor nerves recognized the difference between the rostral and caudal halves of sclerotomes of quail embryos in the absence of PNA binding ability, indicating that PNA binding site on somite cells does not support the selective neural crest migration and nerve growth.  相似文献   

4.
The expression of tenascin by neural crest cells and glia.   总被引:3,自引:0,他引:3  
The extracellular matrix glycoprotein tenascin is concentrated in both the embryo and adult in regions where cell motility is taking place. For example, during avian neural crest morphogenesis tenascin is concentrated in the rostral half of the sclerotome, precisely where the neural crest cells themselves are found. Previous in vitro studies indicated that somite cells were the source of this tenascin, implying a role for tenascin in directing the ventral migration of neural crest cells and thus the establishment of the periodic arrangement of the PNS. In this study, we have used a cDNA probe to identify the source of tenascin found along the pathways of the neural crest using in situ hybridization. In tissue sections, individual cells found along the neural crest migratory pathways, both before entering the somites and within the somites, are strongly labelled by the tenascin cDNA. In vitro neural crest cells are more strongly labelled with the tenascin probe than somite cells. Finally, western blotting has been used to identify tenascin in culture medium conditioned by neural crest cells. This indicates that neural crest cells themselves are the source of much of the tenascin found lining their migratory pathways, and that interactions with somite cells may not be needed to induce the expression of tenascin. We have also studied the distribution of tenascin mRNA in the developing spinal cord and spinal ganglia. At embryonic days 7 and 10, tenascin cDNA hybridizes within cells that appear to be migrating from the ependymal layer to the white matter, as well as within cells in the dorsal roots.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have examined the distribution in Xenopus embryos of beta 1 subunits of integrin, as recognized by cross-reactive antibodies against the avian integrin beta 1 subunit. These antibodies recognize a doublet of bands of approximately 120 kD in Xenopus embryos. The distribution pattern of these integrin cell surface receptors was compared with that of two possible ligands, fibronectin and laminin, in the extracellular matrix during the time of neural crest cell migration. Integrin immunoreactivity in the early neurula was observed lightly outlining somite and epidermal cells and the notochord. The integrin immunostaining increased with developmental age and was observed on most cell types in the embryo but was particularly notable in the intersomitic clefts through which motoraxons grow. The immunoreactivity in this region was not, however, wholly on the axon surfaces, since intersomitic integrin remained detectable in embryos in which the neural tube had been ablated. Fibronectin and laminin were more extensively distributed than integrin at all stages examined. Immunoreactivity for both was observed around the neural tube, notochord, somites, epidermis, dorsal mesentery, and lateral plate mesoderm. The distribution of laminin and fibronectin around the somites was particularly interesting since it was non-uniform and similar to that of integrin. Strongest staining was observed in the intersomitic clefts, and weakest staining was observed on the medial surface of the somites, which faces the neural tube and notochord. The major differences in distribution pattern between the fibronectin and laminin immunoreactivities were that only fibronectin was detected in the mesenchyme of the dorsal fin. Our results demonstrate that a molecule homologous to avian integrin is present in Xenopus embryos during neural crest cell migration and motoraxon outgrowth. Its presence in the intersomitic clefts and on the surface of many embryonic cell types together with the abundant distribution of its ligands are consistent with a potentially important developmental function in neurite outgrowth and/or muscle development.  相似文献   

6.
We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum.  相似文献   

7.
We have investigated the distribution of type I collagen, tenascin, and laminin in younger chick embryos than have previously been studied in detail. The initial appearance of type I collagen, but not tenascin and laminin, is exactly correlated with the beginning of neural crest migration, suggesting a role for collagen I in the migration. Light microscopy of whole mounts of 2-day-old chick embryos reveals that type I collagen is expressed in a rostral to caudal gradient; it localizes to the notochord sheath before accumulating around the neural tube and somites. Collagen I and tenascin also associate with central somite cells. Surprisingly, no extracellular matrix can be detected among the early sclerotomal cells, which suggests that little or no cell migration is involved in this epithelial-mesenchymal transformation. Electron microscopy using peroxidase antiperoxidase reveals that tenascin is present in nonstriated, 10 nm wide fibrils and in interstitial bodies, both of which have previously been reported to contain fibronectin. However, collagen I only occurs in the 10 nm fibrils and larger striated fibrils. This is the first ultrastructural study to assign tenascin to fibrils and interstitial bodies and to describe its appearance and disappearance from embryonic basement membranes. The discussion emphasizes the possible importance of type I collagen in neural crest cell migration and compares the ultrastructural associations of the ECM molecules present at this early embryonic stage.  相似文献   

8.
This study examines the pathways of migration followed by neural crest cells in Xenopus embryos using two recently described cell marking techniques. The first is an interspecific chimera created by grafting Xenopus borealis cells into Xenopus laevis hosts. The cells of these closely related species can be distinguished by their nuclear dimorphism. The second type of marker is created by microinjection of lysinated dextrans into fertilized eggs which can then be used for intraspecific grafting. These recently developed fluorescent dyes are fixable and identifiable in both living and fixed embryos. After grafting labeled donor neural tubes into unlabeled host embryos, the distribution of neural crest cells at various stages after grafting was used to define the pathways of neural crest migration. To control for possible grafting artifacts, fluorescent lysinated dextran was injected into a single blastomere which gives rise to a large number of neural crest cells, thereby labeling the neural crest without grafting. By all three techniques, Xenopus neural crest cells were observed along two predominant pathways in the trunk. The majority of neural crest cells were observed along a "ventral" route, between the neural tube and somite, the notochord and somite, and along the dorsal mesentery. A second group of neural crest cells was observed "dorsally" where they populated the dorsal fin. A third minor "lateral" pathway was observed primarily in borealis/laevis chimerae and in blastomere-injected embryos; some neural crest cells were observed underneath the ectoderm lateral to the neural tube. Along the rostrocaudal axis, neural crest cells were not continuously distributed but were primarily located across from the caudal two-thirds of the somite. Fewer than 3% of the neural crest cells were observed across from the rostral third of each somite. When grafted to ventral locations, neural crest cells were not able to migrate dorsally but migrated laterally along the dorsal mesentery. Labeled neural crest cells gave rise to cells of the spinal, sympathetic, and enteric ganglia as well as to adrenal chromaffin cells, Schwann cells, pigment cells, mesenchymal cells of the dorsal fin, and some cells in the integuments and in the region of the pronephros. These results show that the neural crest migratory pathways in Xenopus differ from those in the avian embryo. In avians NC cells migrate as a closely associated sheet of cells while in Xenopus they migrate as individual cells. Both species exhibit a metamerism in the neural crest cell distribution pattern along the rostrocaudal axis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Neural crest cells appear transiently in early embryogenesis on the dorsal surface of the neural tube and subsequently migrate along specific pathways. Some migrate to between the neural tube and somites, aggregating to form the rudiments of dorsal root ganglia (DRG). The size of DRG at a given somite level is almost constant in all chick embryos. To determine the mechanisms controlling the size of DRG, we transplanted neural crest cells of 2.5-day-old quail embryos into 2.5-day-old chick embryos between the neural tube and the somites, and examined the size of DRG in these chimeric embryos with extra neural crest cells 2 days after the operation, when natural cell death in DRG had not yet occurred. The DRG on the operated side were composed of both chick and quail cells in various proportions. The cell numbers of these chimeric DRG were almost the same as those of the normal DRG on the opposite side. That is, there were significantly fewer chick cells in chimeric DRG than in DRG composed of only chick cells on the opposite unoperated side. This finding indicates that the size of DRG is not determined in migrating neural crest cells but is regulated by the circumstances.  相似文献   

10.
Early chick embryos, stages 11 to 14, were isolated, quick-frozen by immersion in isopentane/propane cryogen (-185 degrees C) and freeze-substituted for study by scanning electron microscopy. Emphasis was placed on the extracellular matrix (ECM) in the axial region of the segmental plate and developing somites. Ultrarapid freezing, followed by delicate freeze-substitution, immobilizes and retains much more ECM than chemical fixatives that include tannic acid (TA). The matrix on the dorsal surface of the neural tube is preserved as delicate filaments which are expressed bilaterally over the tube in a dorso-ventral orientation. These parallel primary ridges of ECM have a spacing of 1 to 3 micron, forming grooves on the wall of the neural tube. Interrupting this pattern are funnel-shaped ridges about 80 to 100 micron apart along the neural tube. The ridges become decorated with cross-bridges creating a dense lattice in the region of somite development, to the extent that a basal lamina composed of dense fibrillar network and amorphous mats of matrix accumulates on the lateral wall of the neural tube. Heavy strands and fenestrated lamellae of ECM interconnect the neural tube, notochord and somites, and attach the overlying epithelium to the upper surface of the somites. The pattern of ECM is complimentary to the migratory pathways of ventrally migrating neural crest cells and is the basis for suggesting that a physical substratum influencing the direction of neural crest cell migration is an idea that should be revived.  相似文献   

11.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

12.
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.  相似文献   

13.
In this review, we describe the results of recent experiments designed to investigate various aspects of neural crest cell lineage and migration. We have analyzed the lineage of individual premigratory neural crest cells by injecting a fluorescent lineage tracer dye, lysinated fluorescein dextran, into cells within the dorsal neural tube. Individual clones contained cells that were located in very diverse sites consistent with their being sensory neurons, prepigment cells, Schwann cells, adrenergic cells, and neural tube cells. These results suggest that some neural crest cells in the trunk and cranial regions are multipotent prior to their emigration from the neural tube. The environment through which neural crest cells move influences both the pattern and direction of their migration. We have shown that the sclerotomal portion of the somites are responsible for the rostrocaudal pattern of trunk neural crest cell movement, whereas the neural tube appears to govern the dorsoventral position of neural crest-derived ganglia. In addition, the notochord inhibits the movement of neural crest cells. In order to understand necessary cell-matrix interactions in neural crest migration, we have performed perturbation experiments, in which antibodies directed against cell surface or extracellular matrix molecules were introduced along neural crest pathways. We find that integrins, fibronectin, laminin, and tenascin all play some role in cranial neural crest emigration. Thus, multiple factors may be involved in controlling neural crest cell migration, and different factors may be important for migration in different regions of the embryo.  相似文献   

14.
Neural crest cell migration was studied in trunks of quail and chick embryos using HNK-1 and L2 antibodies. At the intersegmental cleft, labeled crest cells were associated with the rostral wall of the somite rather than blood vessels. Migration into and through the rostral part of the sclerotomes was more rapid (40-70 microns/hr; quail) and the onset of localization was earlier (after 13-16 hr; quail) than previously supposed. Crest cells here were initially mono- to multipolar, scattered, and inconsistently oriented and formed numerous close (about 20 nm) homo- and heterotypic cell-cell contacts. In vitro models suggested that significant numbers of crest cells, however, could be unlabeled at this early phase. Somitic properties covarying with the hemisegmental pattern of crest cell immigration were investigated. Laminin distribution, although asymmetric in the somites, was not closely related to that of crest cells. Tenascin distribution matched that of crest cells, but only at the localization stage. Earlier, maximal tenascin expression occurred in the somite's caudal wall, a region avoided by crest cells. Chondroitin 6-sulfate proteoglycan expression was elevated in the caudal somite-half at the localization phase and also, at lumbar levels, at the immigration stage. This is consistent with tenascin and proteoglycan having a negative role in crest cell migration. The rostral somite-half was also labeled by HNK-1 and L2, but only in quails. This was associated with the cell surface, was transient, was stable to mild proteolysis, and was labile to cryoprocessing and lipophilic solvents. The spatial and temporal congruence with crest migration suggests that the HNK/L2 adhesion-related carbohydrate epitope on the somites indicates a molecule (possibly glycolipid) which acts via heterotypic cell-cell contacts to provide one cue in the patterned distribution of crest cells in the somites.  相似文献   

15.
Neural crest cell migratory pathways in the trunk of the chick embryo   总被引:15,自引:1,他引:14  
Neural crest cells migrate during embryogenesis to give rise to segmented structures of the vertebrate peripheral nervous system: namely, the dorsal root ganglia and the sympathetic chain. However, neural crest cell arise from the dorsal neural tube where they are apparently unsegmented. It is generally agreed that the somites impose segmentation on migrating crest cells, but there is a disagreement about two basic questions: exactly pathways do neural crest cells use to move through or around somites, and do neural crest cells actively migrate or are they passively dispersed by the movement of somite cells? The answers to both questions are critically important to any further understanding of the mechanisms underlying the precise distribution of the neural crest cells that develop into ganglia. We have done an exhaustive study of the locations of neural crest cells in chick embryos during early stages of their movement, using antibodies to neural crest cells (HNK-1), to neural filament-associated protein in growing nerve processes (E/C8), and to the extracellular matrix molecule laminin. Our results show that Some neural crest cells invade the extracellular space between adjacent somites, but the apparent majority move into the somites themselves along the border between the dermatome/myotome (DM) and the sclerotome. Neural crest cells remain closely associated with the anterior half of the DM of developing somites as they travel, suggesting that the basal lamina of the DM may be used as a migratory substratum. Supporting this idea is our observation that the development of the DM basal lamina coincides in time and location with the onset of crest migration through the somite. The leading front of neural crest cells advance through the somite while the length of the DM pathway remains constant, suggesting active locomotion, at least in this early phase of development. Neural crest cells leave the DM at a later stage of development to associate with the dorsal aorta, where sympathetic ganglia form, and to associate with newly emerging fibers of the ventral root nerve, where they presumably give rise to neuronal supportive cells. Thus we propose that the establishment of the segmental pattern of the peripheral ganglia and nerves depends on the timely development of appropriate substrata to guide and distribute migrating neural crest cells during the early stages of embryogenesis.  相似文献   

16.
We have used amphibian gastrulation as a model system to study the action of the extracellular matrix (ECM) glycoprotein tenascin on mesodermal cell migration. Tenascin function was assayed in vitro during spreading of isolated cells from the dorsal marginal zone (DMZ) and during cell migration from DMZ explants. Plastic coated with bovine fibronectin or gastrula ECM was used as a substratum. In both cases, tenascin added to the medium inhibited spreading and migration of mesodermal cells. In addition, a substratum coated with a mixture of fibronectin and tenascin was found to prevent mesodermal cell migration. Tenascin was also microinjected into the blastocoel cavity of living embryos at the late blastula stage. This led to a complete arrest of gastrulation in more than 80% of the cases. Scanning electron microscopy of fractures from arrested gastrulae showed that mesodermal cell migration was blocked. Similar injection experiments carried out at the middle gastrula stage demonstrated that tenascin is able to inhibit cell migration after cells have already contacted the ECM. Mesodermal cell migration in the presence of tenascin could be restored in vitro and in vivo by the monoclonal antibody mAb Tn68 which is known to mask a cell binding site of the molecule. Finally, tenascin microinjected into the blastocoel of blastula or gastrula stage embryos bound within 15 min to the ECM fibrils at all the stages studied. Our results show that exogenous tenascin can be incorporated into embryonic ECM and interferes in vivo with the interactions of cells with a fibronectin-rich matrix.  相似文献   

17.
The microenvironment created by grafting rostral somitic halves in place of normal somites leads to the formation of nonsegmented peripheral ganglia (Kalcheim and Teillet, 1989; Goldstein and Kalcheim, 1991) and is mitogenic for neural crest (NC) cells that become dorsal root ganglia (DRG) (Goldstein et al., 1990). We have now extended these studies by using three surgical manipulations to determine how additional mesodermal tissues affected DRG growth in chick embryos. The following experimental manipulations were performed: (1) unilateral deletion of epithelial somites, similar deletions followed by replacing the somites with (2) a three-dimensional collagen matrix, or (3) fragments of quail lateral plate mesoderm. When somites were absent or replaced by collagen matrix, ganglia were unsegmented, and their volumes were decreased by 21% and 12%, respectively, compared to contralateral intact DRG. In contrast, when lateral plate mesoderm was transplanted in place of somitic mesoderm, NC cells migrated into the grafted mesoderm and formed unsegmented DRG whose volumes were increased by 62.6% compared to the contralateral ganglia. These results suggest that although DRG precursors do not require sclerotome to begin migration and condensation processes, DRG size is modulated by the properties of the mesoderm. Permissiveness to migration is positively correlated with an increase in DRG volume. This volume increase observed in grafts of lateral plate mesoderm is likely to result from enhanced proliferation of neural crest progenitors, previously demonstrated for DRG cells in rostral somitic grafts.  相似文献   

18.
Neural crest cells migrate segmentally through the rostral half of each trunk somite due to inhibitory influences of ephrins and other molecules present in the caudal-half of somites. To examine the potential role of Notch/Delta signaling in establishing the segmental distribution of ephrins, we examined neural crest migration and ephrin expression in Delta-1 mutant mice. Using Sox-10 as a marker, we noted that neural crest cells moved through both rostral and caudal halves of the somites in mutants, consistent with the finding that ephrinB2 levels are significantly reduced in the caudal-half somites. Later, mutant embryos had aberrantly fused and/or reduced dorsal root and sympathetic ganglia, with a marked diminution in peripheral glia. These results show that Delta-1 is essential for proper migration and differentiation of neural crest cells. Interestingly, absence of Delta-1 leads to diminution of both neurons and glia in peripheral ganglia, suggesting a general depletion of the ganglion precursor pool in mutant mice.  相似文献   

19.
During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.  相似文献   

20.
Rho GTPases are signaling components that participate to the control of cell morphology, adhesion and motility through the regulation of F-actin cytoskeleton dynamics. In this paper, we report the identification of RhoB in Xenopus laevis (XRhoB) and its expression pattern during early development. Whole-mount in situ hybridization analysis indicated that XrhoB is expressed at high levels in the dorsal marginal zone early in gastrula and in the dorsal midline at later stages. At mid-neurula stages, XrhoB expression extends to the central nervous system, presomitic mesoderm and somites. Later during development, rhoB mRNA is detected in the eyes, the migrating neural crest cells as well as the dorso-lateral part of the somites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号