首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock protein 70s (HSP70s) are fundamental chaperone proteins that are indispensable to most living organisms. In order to investigate the function of HSP70 and heat shock response in shrimp, a heat shock cognate (HSC70) gene of the white shrimp (Litopenaeus vannamei), containing a 1959-bp open reading frame, was cloned and characterized. The amino acid sequence, 71.5 kDa of molecular weight, shares 80-99.6% homology with 12 diverse species' HSP70s and HSC70s. In fact, some segments of the eukaryotic HSC70 sequence, such as ATP/GTP-binding site, cytoplasmic HSP70 C-terminal sequence, and GGMP/GAP repeats, are also found in the putative shrimp HSC70. Moreover, multi-tissue RT-PCR was performed to assay the basal expressions of HSC70 in the heart, gill, hepatopancreas, stomach, gut, and muscle. The results demonstrate that the basal expressions of HSC70 in theses organs are similar to that of beta-actin. Furthermore, quantitative real-time experiments showed that HSC70 was up-regulated in hepatopancreas (4.6-fold), stomach (5.9-fold), gut (2.6-fold), and muscle (3.5-fold) but not in the heart (1.7-fold) and gill (1.6-fold) after 2 h of heat shock. Nevertheless, the HSC70 was found to be highly expressed in the heart and gill following 6 h of heat shock. This suggests that HSC70 in white shrimp possess both short-term and long-term responses to heat shock stress, indicating this HSC70 may be a heat-dependent HSC70 member. Finally, we constructed an expression vector to generate HSC70 in Escherichia coli BL21, which displayed immune cross-reactivity with mouse HSP70 antibody. In conclusion, the identification and expression of white shrimp HSC70 gene present useful data for studying the molecular mechanism of heat shock response and the effect of heat shock proteins in shrimps' cytoprotection.  相似文献   

2.
We have used DNaseI and micrococcal nuclease sensitivity assays to determine the chromatin structures in the control regions of the Chlamydomonas reinhardtii HSP70A and RBCS2 genes. Both genes appear to be organized into nucleosome arrays, which exhibit shorter nucleosome repeat lengths than bulk chromatin. In HSP70A we have identified up to four confined DNaseI hypersensitive sites, three of them localize to the promoter region, a fourth one to the fourth intron. Three hypersensitive sites map close to putative heat shock elements, one close to a CCAAT-box. All hypersensitive sites are located to internucleosomal linkers. Alternative nucleosome positions at half-nucleosomal phasing were constitutively detected in the HSP70A promoter region, indicating local chromatin remodelling. Upon heat shock, dramatic changes in the nucleosome structure of HSP70A were detected that particularly affected the promoter, but also a region within the fourth intron. In contrast, light induction entailed no change in HSP70A chromatin. In the RBCS2 control region we identified a strong DNaseI hypersensitive site that maps close to a CCAAT-box. This site forms the boundary of a nucleosome array with a region of ~700 bp apparently devoid of nucleosomes. This study demonstrates that chromatin structure may be determined readily at fairly high resolution in Chlamydomonas, suggesting this organism as a well-suited model for studying the role of chromatin structure on gene expression in photosynthetic eukaryotes.  相似文献   

3.
Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) genes, plus GRP78 (Glucose-regulated protein 78 kDa) were surveyed for expression levels via Q-PCR after both an acute 2-h heat shock experiment and a time course assay in the Antarctic plunderfish Harpagifer antarcticus. In general, down regulation of all genes was observed during the course of the heat shock experiments. This thermally induced down regulation was particularly acute for the GRP78 gene, which at one time point was more than 100-fold down regulated. These results demonstrate the loss of the heat shock response in H. antarcticus, a basal member of the Notothenioidei. This finding is discussed with reference to the survival of Notothenioids during observed ocean warming and also the reorganisation of cellular protein mechanisms of species living in extreme environments.  相似文献   

4.
Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host.  相似文献   

5.
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.  相似文献   

6.
7.
African clawed frogs (Xenopus laevis) endure bouts of severe drought in their natural habitats and survive the loss of approximately 30% of total body water due to dehydration. To investigate molecular mechanisms employed by X. laevis during periods of dehydration, the heat shock protein response, a vital component of the cytoprotective stress response, was characterized. Using western immunoblotting and multiplex technology, the protein levels of HSP27, HSP40, HSP60, HSP70, HSC70, and HSP90 were quantified in the liver, skeletal muscle, kidney, lung, and testes from control frogs and those that underwent medium or high dehydration (~16 or ~30% loss of total body water). Dehydration increased HSP27 (1.45–1.65-fold) in the kidneys and lungs, and HSP40 (1.39–2.50-fold) in the liver, testes, and skeletal muscle. HSP60 decreased in response to dehydration (0.43–0.64 of control) in the kidneys and lungs. HSP70 increased in the liver, lungs, and testes (1.39–1.70-fold) during dehydration, but had a dynamic response in the kidneys (levels increased 1.57-fold with medium dehydration, but decreased to 0.56 of control during high dehydration). HSC70 increased in the liver and kidneys (1.20–1.36-fold), but decreased in skeletal muscle (0.27–0.55 of control) during dehydration. Lastly, HSP90 was reduced in the kidney, lung, and skeletal muscle (0.39–0.69 of control) in response to dehydration, but rose in the testes (1.30-fold). Overall, the results suggest a dynamic tissue-specific heat shock protein response to whole body dehydration in X. laevis.  相似文献   

8.
Heat shock cognate 70 (HSC70) is an important evolutionary conserved protein that plays a major role in maintaining the homeostasis and immunity of many organisms. In this study, a HSC70 from Channa striatus was identified from its cDNA library and characterized using bioinformatics and molecular biology tools. CsHSC70 cDNA was 1953 base pair (bp) in length along with an open reading frame which encoded a polypeptide of 650 amino acid residues. Tissue distribution results showed that CsHSC70 was considerably expressed in gill, to a lesser extent in head kidney, blood, spleen and liver and at low level in other tissues. Using C. striatus gill as cell model, effects of fungal, bacterial and poly I:C stimulant on the mRNA levels of CsHSC70 was examined. We also described the antimicrobial features of two peptides namely CsHSC70 A1and CsHSC70 A2 derived from the N-terminal of CsHSC70 protein. CsHSC70 A1 peptide (40 µg/ml) exhibited potent bactericidal activity against Micrococcus luteus cells. Flow cytometric analysis revealed that the M. luteus cells stained with propidium iodide, upon treated with CsHSC70 A1 at the concentration of 40 µM/ml showed 38% survival compared to its control (99.6%). It seems that CsHSC70 A1 peptide shows antimicrobial activity against M. luteus through membrane disruption. Additionally, scanning electron microscope (SEM) observation confirmed that CsHSC70 A1 peptide treatment completely damaged and destructed the M. luteus cells. Taken together, these findings suggest that CsHSC70 A1 peptide could be a safe and potential therapeutic molecule substitute to antibiotics in various clinical fields.  相似文献   

9.
Although duckweed Lemna minor L. is a known accumulator of cadmium, detailed studies on its physiological and/or defense responses to this metal are still lacking. In this study, the effects of 10 μM CdCl2 on Lemna minor were monitored after 6 and 12 days of treatment, while growth was estimated every 2 days. Cadmium treatment resulted in progressive accumulation of the metal in the plants and led to a decrease in the growth rate to 54% of the control value. The metal also considerably impaired chloroplast ultrastructure and caused a significant reduction in pigment content, i.e., at day 12, by 30 and 34% for chlorophylls a and b, and by 25% for carotenoids. During cadmium treatment, the contents of malondialdehyde and endogenous H2O2 progressively increased (rising 77 and 46% above the controls by day 12), indicating that cadmium induced considerable oxidative stress. On the other hand, higher activities of pyrogallol peroxidase (PPX), ascorbate peroxidase (APX) and catalase (CAT), as well as the induction of a new APX isoform, in cadmium-treated plants, clearly showed activation of an antioxidative response. At day 6, only PPX activity was significantly above the controls (15%), while, at day 12, PPX, APX and CAT activities were increased (74, 78 and 63%). Cadmium also led to accumulation of the heat shock protein 70 (HSP70) and induced an additional isoform of this protein. The obtained results suggest that cadmium (10 μM) is phytotoxic to Lemna minor, inducing oxidative stress, and that antioxidative enzymes and HSP70 play important roles in the defense against cadmium toxicity. M. Tkalec and T. Prebeg contributed equally to this work  相似文献   

10.
Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp70 was able to suppress the thermosensitivity of an Escherichia coli dnaK756 strain, but not that of the corresponding deletion strain (dnaK52) or dnaK103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK756 strain. We also identified two key amino acid residues (V401 and Q402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp70 and PfHsp70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp40 chaperone machinery.  相似文献   

11.
We characterized the degree of plasticity in thermal tolerance (assessed as critical thermal maxima; CTMax) and the relationship between thermal tolerance and underlying physiological and biochemical factors in two subspecies of a teleost fish, Fundulus heteroclitus. CTMax was not affected by repeated daily heat shock, but increased within a few days in response to warm acclimation. Loss of tolerance with acclimation to lowered temperatures occurred more slowly. Exposure to hypoxia decreased CTMax, and hyperoxia had no effect. CTMax showed a daily rhythm in both subspecies. Thermal acclimation changed the value of CTMax but did not affect the amplitude of the rhythm. Exposure to altered photoperiod had complex effects with a summer photoperiod producing a daily rhythm at higher CTMax than a spring photoperiod, and a winter photoperiod removing the rhythm. There was no daily rhythm in routine metabolic rate in either subspecies. There was no relationship between CTMax and the protein levels of the constitutive 70 and 90 kDa heat shock proteins (HSC70, HSP90β) in gill, or with mRNA levels of hsc70 in liver. There was a daily rhythm in the basal levels of the inducible hsp70-2 mRNA. Induction of hsp70-2 mRNA with mild heat shock occurred only in the evening and at night, and not during the day. These results demonstrate that there is substantial plasticity of thermal tolerance in killifish, and that this plasticity does not differ between subspecies. CTMax has a complex relationship with physiological and biochemical mechanisms that have been hypothesized to affect thermal tolerance.  相似文献   

12.
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0, respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h at 65 °C.  相似文献   

13.
14.
GRP78 (78 kDa glucose-regulated protein), also known as BiP (immunoglobulin heavy-chain-binding protein), is an essential regulator of endoplasmic reticulum (ER) homeostasis because of its multiple functions in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. In this report, we cloned the full length cDNA of GRP78 (FcGRP78) from Chinese shrimp Fenneropenaeus chinensis. This cDNA revealed a 2,325 bp with 1,968 bp open reading frame encoding 655 amino acids. This is the first reported GRP78 gene in Crustacea. The deduced amino acid sequence of FcGRP78 shared high identity with previously reported insect GRP78s: 86, 87 and 85% identity with GRP78s of Drosophila melanogaster, Aedes aegypti and Bombyx mori, respectively. Northern blot analysis shows that FcGRP78 is ubiquitously expressed in tissues of shrimp. Heat shock at 35°C significantly enhanced the expression of FcGRP78 at the first hour, reached the maximum at 4 h post heat shock, dropped after that and resumed to the normal level until 48 h of post recovery at 25°C. Additionally, differential expression of FcGRP78 was detected in haemocytes, hepatopancreas and lymphoid organ when shrimp were challenged by white spot syndrome virus (WSSV). We inferred that FcGRP78 may play important roles in chaperoning, protein folding and immune function of shrimp.  相似文献   

15.
16.
17.
18.
Li K  Zheng T  Tian Y  Xi F  Yuan J  Zhang G  Hong H 《Biotechnology letters》2007,29(4):525-530
When Bacillus licheniformis was administered to the white shrimp, Litopenaeus vannamei, although the total bacterial counts in the intestinal tract of the shrimp remained constant, Vibrio numbers significantly decreased (P < 0.05). Haemocyte counts together with phenoloxidase and superoxide dismutase activities of the shrimp were significantly higher (P < 0.05) in treatments than in the control. Thus, administration of B. licheniformis can improve the white shrimp's intestinal microflora and its immune ability.  相似文献   

19.
Molecular chaperones facilitate the correct folding of other proteins, and heat shock proteins form one of the major classes of molecular chaperones. Heat shock protein 70 (Hsp70) has been extensively studied, and shown to be critically important for cellular protein homeostasis in almost all prokaryotic and eukaryotic systems studied to date. Since there have been very limited studies conducted on coelacanth chaperones, the main objective of this study was to genetically and biochemically characterize a coelacanth Hsp70. We have successfully isolated an Indonesian coelacanth (L. menadoensis) hsp70 gene, Lmhsp70, and found that it contained an intronless coding region and a potential upstream regulatory region. Lmhsp70 encoded a typical Hsp70 based on conserved structural and functional features, and the predicted upstream regulatory region was found to contain six potential promoter elements, and three potential heat shock elements (HSEs). The intronless nature of the coding region and the presence of HSEs suggested that Lmhsp70 was stress-inducible. Phylogenetic analyses provided further evidence that Lmhsp70 was probably inducible, and that it branched as a clade intermediate between bony fish and tetrapods. Recombinant LmHsp70 was successfully overproduced, purified and found to be functional using ATPase activity assays. Taken together, these data provide evidence for the first time that the coelacanth encodes a functional molecular chaperone system. K. W. Modisakeng and M. Jiwaji contributed equally to this study.  相似文献   

20.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号