首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Identifying nest predators is critical to understanding predation pressures that birds face, and using surveillance cameras appears to be the most reliable method of nest predator identification. However, presence and methods of using camera equipment may introduce bias in predation rates. To summarize potential effects of cameras on nest success we reviewed published and unpublished studies that estimated daily nest predation for bird nests with and without surveillance cameras. We used meta-analyses to quantitatively synthesize the direction and magnitude of these effects from independent studies. We found evidence that, on average, use of camera equipment may reduce nest predation rates, although these differences were not always significant and varied relative to geographic regions, vegetation types, and study duration. Researchers using camera surveillance to monitor nests must be aware that the equipment may be affecting rates of predation and possibly biasing data collected on predator identity. Based on our review and analysis, we provide recommendations for researchers seeking to minimize or control for potential bias when using surveillance cameras to monitor nest predation.  相似文献   

2.
Development of new methods for obtaining basic demographic data from difficult‐to‐access breeding colonies and easily disturbed species is an important challenge in studies of seabirds. We describe a method that can generate data concerning annual breeding success of cliff‐nesting seabirds or other colonial birds with open nests. Our method requires only a single visit to a colony every second or third year, and is based on the use of automated time‐lapse photography. To test our method, we used time‐lapse photos to examine the breeding success of Thick‐billed Murres (Uria lomvia) in two breeding colonies in Greenland during the years 2011, 2012, and 2014. Based on the analysis of time‐lapse photos, we found that hatching success during the 3 yr of our study ranged from 60% to 81%, fledging success from 89% to 95%, and breeding success from 53% to 74% (Table 1). Use of digital image analysis made it possible to differentiate between breeding and non‐breeding birds and determine if and when breeding attempts failed or succeeded. The key to making our method a realistic long‐term monitoring technique is the use of an automated, formal image analysis to process the thousands of photos from the time‐lapse cameras and, more specifically, to reduce a large number of photos to a manageable number. Using our method, we needed 12–22 h per study plot, depending on the number of breeding sites per plot (range = 47–127) and whether it was the first or the second time the plot was analyzed, to obtain our estimates of hatching, fledging, and breeding success. This included time for data preparation, image analyses, visual inspections, and summarizing data in a spreadsheet. We found that our estimates of breeding success were comparable to those obtained by direct observation in the field. An important aspect of using time‐lapse technology is to foresee potential reasons why time‐lapse cameras might stop taking pictures, for example, equipment failure (camera, timer, or battery) or interference by visitors (e.g., vandalism or theft). As such, thorough testing of time‐lapse systems and selecting camera locations less likely to be disturbed are most important. We believe that use of time‐lapse photography in combination with digital image analysis to estimate breeding success can be useful for determining the breeding success of other cliff‐nesting seabirds and, more generally, other birds that breed in colonies, especially those located in remote areas and where direct observation may disturb birds.  相似文献   

3.
The study of animals in the wild offers opportunities to collect relevant information on their natural behavior and abilities to perform ecologically relevant tasks. However, it also poses challenges such as accounting for observer effects, human sensory limitations, and the time intensiveness of this type of research. To meet these challenges, field biologists have deployed camera traps to remotely record animal behavior in the wild. Despite their ubiquity in research, many commercial camera traps have limitations, and the species and behavior of interest may present unique challenges. For example, no camera traps support high‐speed video recording. We present a new and inexpensive camera trap system that increases versatility by separating the camera from the triggering mechanism. Our system design can pair with virtually any camera and allows for independent positioning of a variety of sensors, all while being low‐cost, lightweight, weatherproof, and energy efficient. By using our specialized trigger and customized sensor configurations, many limitations of commercial camera traps can be overcome. We use this system to study hummingbird feeding behavior using high‐speed video cameras to capture fast movements and multiple sensors placed away from the camera to detect small body sizes. While designed for hummingbirds, our application can be extended to any system where specialized camera or sensor features are required, or commercial camera traps are cost‐prohibitive, allowing camera trap use in more research avenues and by more researchers.  相似文献   

4.
红外相机技术在我国野生动物监测中的应用: 问题与限制   总被引:2,自引:0,他引:2  
红外相机(camera traps)作为对野生动物进行“非损伤”性采样的技术, 已成为研究动物多样性、种群生态学及行为学的常用手段之一。其发展和普及为中国野生动物多样性和物种保育研究带来了诸多机会。如今, 国内大多数自然保护区都在运用红外相机技术开展物种监测工作。本文结合20年来已发表的相关研究, 从内容、实验设计以及发展趋势方面, 总结了目前红外相机技术在应用过程中出现的共性问题; 并就相机对动物的干扰性、影像识别、研究的适用范围及安全保障四个方面, 对该项技术在实践中存在的限制进行了探讨。最后结合红外相机技术未来的发展方向, 提出了建立技术规范、数据集成和共享、影像数据版权维护、提高监测效率等问题。  相似文献   

5.
Metal box (e.g., Elliott, Sherman) traps and remote cameras are two of the most commonly employed methods presently used to survey terrestrial mammals. However, their relative efficacy at accurately detecting cryptic small mammals has not been adequately assessed. The present study therefore compared the effectiveness of metal box (Elliott) traps and vertically oriented, close range, white flash camera traps in detecting small mammals occurring in the Scenic Rim of eastern Australia. We also conducted a preliminary survey to determine effectiveness of a conservation detection dog (CDD) for identifying presence of a threatened carnivorous marsupial, Antechinus arktos, in present‐day and historical locations, using camera traps to corroborate detections. 200 Elliott traps and 20 white flash camera traps were set for four deployments per method, across a site where the target small mammals, including A. arktos, are known to occur. Camera traps produced higher detection probabilities than Elliott traps for all four species. Thus, vertically mounted white flash cameras were preferable for detecting the presence of cryptic small mammals in our survey. The CDD, which had been trained to detect A. arktos scat, indicated in total 31 times when deployed in the field survey area, with subsequent camera trap deployments specifically corroborating A. arktos presence at 100% (3) indication locations. Importantly, the dog indicated twice within Border Ranges National Park, where historical (1980s–1990s) specimen‐based records indicate the species was present, but extensive Elliott and camera trapping over the last 5–10 years have resulted in zero A. arktos captures. Camera traps subsequently corroborated A. arktos presence at these sites. This demonstrates that detection dogs can be a highly effective means of locating threatened, cryptic species, especially when traditional methods are unable to detect low‐density mammal populations.  相似文献   

6.
Camera traps are increasingly used in ecological research. However, tests of their performance are scarce. It is already known from previous work that camera traps frequently fail to capture visits by animals. This can lead to a misinterpretation of ecological results such as density estimates or predation events. While previous work is mainly based on mammals, for birds, no data about if and how camera traps can be successfully used to estimate species diversity or density are available. Hence, the goal of our study was an empirical validation of six different camera traps in the field. We observed a total number of N = 4567 events (independent visits of a bird) in 100 different sessions from March 2017 until January 2018 while camera traps were deployed. In addition, N = 641 events are based on a comparison of the two close‐up camera traps especially designed for birds. These events were all directly observed by the authors. Thus, the cameras can be compared against the human observer. To give an overall assessment and a more generalizable result, we combined the data from the six camera traps and showed that bird size category (effect size = 0.207) and distance (effect size = 0.132) are the most important predictors for a successful trigger. Also, temperature had a small effect, and flock size had an impact with larger flocks being captured more often. The approach of the bird, whether it approached the camera frontally or laterally had no influence. In Table 8 , we give some recommendations, based on our results, at which distances camera traps should be placed to get a 25%, 50%, and 75% capture rate for a given bird size.  相似文献   

7.
Existing protocols for assessing the performance characteristics of large field-of-view (LFOV) gamma cameras can be inappropriate and require modification for use with small field-of-view (SFOV) gamma camera systems. This communication proposes a generic scheme suitable for evaluating the performance characteristics of SFOV gamma cameras, based on modifications to the standard procedures of NEMA NU1-2007. Key differences in methodology between tests for LFOV and SFOV gamma cameras are highlighted along with the rationale for these changes. It is envisaged that this scheme will provide more appropriate methods for equipment characterisation, ensuring quality and consistency for all SFOV cameras.  相似文献   

8.
Monitoring the movement and distribution of wildlife is a critical tool of an adaptive management framework for wildlife conservation. We installed motion‐triggered cameras to capture the movement of mammals through two purpose‐built migration gaps in an otherwise fenced conservancy in northern Kenya. We compared the results to data gathered over the same time period (1 Jan 2011–31 Dec 2012) by the human observers monitoring mammal tracks left at the same fence gaps in a sandy loam detection strip. The camera traps detected more crossing events, more species and more individuals of each species per crossing event than did the human track observers. We tested for volume detection differences between methods for the five most common species crossing each gap and found that all detection rates were heavily weighted towards the camera‐trap method. We review some of the discrepancies between the methods and conclude that although the camera traps record more data, the management of that data can be time‐consuming and ill‐suited to some time‐sensitive decision‐making. We also discuss the importance of daily track monitoring for adaptive management conservation and community security.  相似文献   

9.
Plant phenology is highly sensitive to changes in environmental conditions and can vary widely across landscapes. Current observation methods are either manual for small‐scale, high precision measurements or by satellite remote sensing for large‐scale, low spatial resolution measurement. The development of inexpensive approaches is necessary to advance large scale, high precision phenology monitoring. The use of publicly available, Internet‐connected cameras, often associated with airports, national parks, and roadway conditions, for detecting and monitoring plant phenology at a continental scale can augment existing ground and satellite‐based methodologies. We collected twice‐daily images from over 1100 georeferenced public cameras across North America from February 2008 to 2009. Using a test subset of these cameras, we compared modeled spring ‘green‐up’ with that from co‐occurring remote sensing products. Although varying image exposure and color correction introduced noise to camera measurements, we were able to correlate spring green‐up across North America with visual validation from images and detect a latitudinal trend. Public cameras had an equivalent or higher ability to detect spring compared with satellite‐based data for corresponding locations, with fewer numbers of poor quality days, shorter continuous bad data days, and significantly lower errors of spring estimates. Manual image segmentation into deciduous, evergreen, and understory vegetation allowed detection of spring and fall onset for multiple vegetation types. Additional advantages of a public camera‐based monitoring system include frequent image capture (subdaily) and the potential to detect quantitative responses to environmental changes in organisms, species, and communities. Public cameras represent a relatively untapped and freely available resource for supporting large‐scale ecological and environmental monitoring.  相似文献   

10.
Camera surveys often involve placing bait in front of the camera to capture animals more frequently, which could introduce biases in parameter estimates. From September 2008 to March 2009, we monitored cameras placed at random, along game trails, and at feed stations to determine if camera placement influenced measures of population demographics in a herd of white-tailed deer (Odocoileus virginianus). There was no time period in which cameras placed at feed stations provided sex ratio and recruitment estimates similar to those acquired from randomly placed cameras. Trail-based camera surveys provided population estimates similar to those from random sites and may provide a feasible alternative to using baited camera stations. © 2011 The Wildlife Society.  相似文献   

11.
A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.  相似文献   

12.
ABSTRACT Wildlife crossing-structures (e.g., underpasses and overpasses) are used to mitigate deleterious effects of highways on wildlife populations. Evaluating performance of mitigation measures depends on monitoring structures for wildlife use. We analyzed efficacy of 2 noninvasive methods commonly used to monitor crossing-structure use by large mammals: tracking and motion-activated cameras. We monitored 15 crossing-structures every other day between 29 June and 24 October 2007 along the Trans-Canada Highway in Alberta, Canada. Our objectives were to determine how species-specific detection rates are biased by the detection method used, to determine factors contributing to crossing-event detection, and to evaluate the most cost-effective approach to monitoring. We detected 3,405 crossing events by tracks and 4,430 crossings events by camera for mammals coyote-sized and larger. Coyotes (Canis latrans) and grizzly bears (Ursus arctos) were significantly more likely to be detected by track-pads, whereas elk (Cervus elaphus) and deer (Odocoileus sp.) were more likely to be detected by cameras. Crossing-event detection was affected by species, track-pad length, and number of animals using the crossing structure. At the levels of animal activity observed in our study our economic analysis indicates that cameras are more cost-effective than track-pads for study durations >1 year. Understanding the benefits and limitations of camera and track-pad methods for monitoring large mammal movement at wildlife crossing-structures will help improve the efficiency of studies designed to evaluate the effectiveness of highway mitigation measures.  相似文献   

13.
2012年8月至2013年11月,在15 hm2弄岗森林动态监测样地及其周边地区以1台/2 hm2密度布设了35台红外相机,对研究区域内大中型兽类和林下鸟类资源进行连续监测。共记录到20种兽类和26种鸟类,包括2种国家I级、8种国家II级重点保护野生动物。其中,小泡巨鼠(Leopoldamys edwardsi)、帚尾豪猪(Atherurus macrourus)、赤腹松鼠(Callosciurus erythraeus)、北树鼩(Tupaia belangeri)、赤麂(Muntiacus muntjak)等5种动物拍摄率和相对丰富度均居于兽类的前5位;白鹇(Lophura nycthemera)、橙头地鸫(Zoothera citrina)和蓝背八色鸫(Pitta soror)的相对丰富度居于鸟类的前3位。虽然每月监测的鸟兽种数、多样性指数和均匀度指数均不存在显著的季节性差异,但不同季节记录到的兽类和鸟类种类存在一定差异:黑叶猴(Trachypithecus francoisi)、野猪(Sus scrofa)2种兽类和斑头鸺鹠(Glaucidium cuculoides)、长尾阔嘴鸟(Psarisomus dalhousiae)、红胁蓝尾鸲(Tarsiger cyanurus)3种鸟类仅在旱季记录到;而仙八色鸫(Pitta nympha)和凤头鹰(Accipiter trivirgatus)2种鸟类仅在雨季记录到。活动节律分析结果表明赤麂、北树鼩、赤腹松鼠和白鹇为昼行性动物,帚尾豪猪与小泡巨鼠为夜行性动物。以上研究结果有助于监测喀斯特生境大中型兽类和林下鸟类种群的变化,为保护区有效管理提供数据支持。  相似文献   

14.
ABSTRACT.   Monitoring bird nests with cameras provides an opportunity to identify the cause of nest failure and record the behavior of individuals. However, leaving an object continuously within sight of a nest could have potential negative effects on nesting success. We compared daily survival rates of nests monitored using cameras and human visitation to nests tracked via human visitation only to test for potential additional effects of camera monitoring on predation rates. From 2006 to 2008, experiments were conducted on Bylot Island (Nunavut) using 80 artificial nests and 53 real nests of Baird's Sandpipers ( Calidris bairdii ) and White-rumped Sandpipers ( Calidris fuscicollis ). Rates of predation on real and artificial nests varied considerably among years. However, survival rates of camera-monitored nests did not differ from those of nests monitored without cameras. Predators of artificial nests included Arctic foxes ( Vulpes lagopus ), Glaucous Gulls ( Larus hyperboreus ), and Long-tailed Jaegers ( Stercorarius longicaudus ), whereas Arctic foxes were responsible for all camera-recorded predation events at real nests. Camera monitoring should be promoted as a viable method for monitoring nests of Arctic shorebirds because our results indicate that placing cameras at nests does not bias estimates of nest survival obtained via nest visits.  相似文献   

15.
CCD cameras have numerous advantages over photographic film for detecting electrons; however the point spread function of these cameras has not been sufficient for single particle data collection to subnanometer resolution with 300kV microscopes. We have adopted spectral signal to noise ratio (SNR) as a parameter for assessing detector quality for single particle imaging. The robustness of this parameter is confirmed under a variety of experimental conditions. Using this parameter, we demonstrate that the SNR of images of either amorphous carbon film or ice embedded virus particles collected on a new commercially available 4kx4k CCD camera are slightly better than photographic film at low spatial frequency (<1/5 Nyquist frequency), and as good as photographic film out to half of the Nyquist frequency. In addition it is slightly easier to visualize ice embedded particles on this CCD camera than on photographic film. Based on this analysis it is realistic to collect images containing subnanometer resolution data (6-9A) using this CCD camera at an effective magnification of approximately 112000x on a 300kV electron microscope.  相似文献   

16.
ABSTRACT.   Inspection of cavity nests and nest boxes is often required during studies of cavity-nesting birds, and fiberscopes and pole-mounted video cameras are sometimes used for such inspection. However, the cost of these systems may be prohibitive for some potential users. We describe a user-built, wireless cavity viewer that can be used to access cavities as high as 15 m and with entrance diameters as small as 2.5 cm. System components include a wireless camera, boom with near-infrared lighting system, hand-held television, and telescoping pole. The unit can be assembled in about one day with commonly available tools, and the total cost was about $850 (US). Our cavity-viewing system was used to monitor the nests of Western Bluebirds ( Sialia mexicana ) and proved to be reliable and effective. During two field seasons, we attempted to check the status of nests 928 times and were able to determine the nesting stage 901 times (97%). For those willing to assemble their own units, our cavity viewer permits safe, direct examination of cavity nests or open nests for investigators with limited budgets.  相似文献   

17.
本研究以四川王朗国家级自然保护区为研究区域, 利用红外相机对保护区内的主要野生动物进行了初步调查, 分析了该区域的物种多样性现状、相机数量和相机工作日与物种数量间的关系以及物种的相对丰富度。结果表明: 42台红外相机共拍摄到物种独立照片1,793张, 鉴定出野生动物25种, 包括大熊猫(Ailuropoda melanoleuca)、四川羚牛(Budorcas tibetanus)和黄喉雉鹑(Tetraophasis szechenyii) 3种国家一级重点保护野生动物, 黑熊(Ursus thibetanus)、黄喉貂(Martes flavigula)、中华鬣羚(Capricornis milneedwardsii)、中华斑羚(Naemorhedus griseus)等8种国家二级重点保护野生动物。在相机数量增加到23台的时候拍摄到了本次记录的全部25种野生动物, 并且在单台相机工作日达到180天时, 物种数达到饱和。保护区内物种相对丰富度最高的是血雉(Ithaginis cruentus)(29.28)和毛冠鹿(Elaphodus cephalophus)(15.78); 大熊猫的相对丰富度为8.09; 红腹角雉(Tragopan temminckii)、中华鬣羚和黄喉雉鹑的相对丰富度在2-5之间; 中华斑羚、勺鸡(Pucrasia macrolopha)、黑熊、四川羚牛和蓝马鸡(Crossoptilon auritum)的相对丰富度最低, 不到1。综上所述, 红外相机能够有效地对野生动物资源进行监测调查, 对于相对丰富度较低的物种需要投入更多的精力, 这些物种的栖息地保护对于自然保护区的发展至关重要。  相似文献   

18.
Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images’ high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows’ or persons’ surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.  相似文献   

19.
We investigated imaging of chemiluminescent signals from 1,2-dioxetanes with cooled CCD cameras. Non-radioactive detection methods for biomolecules utilizing these chemiluminescent substrates for alkaline phosphatase have been developed. Applications which have been successfully adapted to this technology include Southern and Northern blotting, immunoblotting, ELISA methods and DNA sequencing. Dephosphorylation of the dioxetane CSPD by alkaline phosphatase generates an unstable anion that decomposes resulting in light production. The wavelength of the emitted light is approximately 460nm. We have utilized Photometrics Star and MXC 200L cooled CCD cameras for direct imaging of chemiluminescent signals. Benefits of utilizing a CCD detector include rapid data digitization and more accurate quantitation of chemiluminescent signals compred to film-based densitometry owing to the significantly greater dynamic range. Chemiluminescent images from dot blots of biotinylated DNA, Southern blots and DNA sequencing gel blots were obtained. In a chemiluminescent microtitre plate assay, serial dilutions of alkaline phosphatase spanning four orders of magnitude can be detected. Our results indicate that the digitization of chemiluminescent signal data with cooled CCD cameras is an excellent alternative to 32P detection methods utilizing storage phosphor screen imaging systems.  相似文献   

20.
Ecology and management programs designed to track population trends over time increasingly are using passive monitoring methods to estimate terrestrial mammal densities. Researchers use motion-sensing cameras in mammal studies because they are cost-effective and advances in statistical methods incorporate motion-sensing camera data to estimate mammal densities. Density estimation involving unmarked individuals, however, remains challenging and empirical tests of statistical models are relatively rare. We tested the random encounter and staying time model (REST), a new means of estimating the density of an unmarked population, using human volunteers and simulated camera surveys. The REST method produced unbiased estimates of density, regardless of changes in human abundance, movement rates, home range sizes, or simulated camera effort. These advances in statistical methods when applied to motion-sensing camera data provide innovative avenues of large-mammal monitoring that have the potential to be applied to a broad spectrum of conservation and management studies, provided assumptions for the REST method are rigorously tested and met. © 2020 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号