首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Feral and free-ranging domestic cats (Felis catus) can have strong negative effects on small mammals and birds, particularly in island ecosystems. We deployed camera traps to study free-ranging cats in national wildlife refuges and state parks on Big Pine Key and Key Largo in the Florida Keys, USA, and used spatial capture–recapture models to estimate cat abundance, movement, and activities. We also used stable isotope analyses to examine the diet of cats captured on public lands. Top population models separated cats based on differences in movement and detection with three and two latent groups on Big Pine Key and Key Largo, respectively. We hypothesize that these latent groups represent feral, semi-feral, and indoor/outdoor house cats based on the estimated movement parameters of each group. Estimated cat densities and activity varied between the two islands, with relatively high densities (~4 cats/km2) exhibiting crepuscular diel patterns on Big Pine Key and lower densities (~1 cat/km2) exhibiting nocturnal diel patterns on Key Largo. These differences are most likely related to the higher proportion of house cats on Big Pine relative to Key Largo. Carbon and nitrogen isotope ratios from hair samples of free-ranging cats (n = 43) provided estimates of the proportion of wild and anthropogenic foods in cat diets. At the population level, cats on both islands consumed mostly anthropogenic foods (>80% of the diet), but eight individuals were effective predators of wildlife (>50% of the diet). We provide evidence that cat groups within a population move different distances, exhibit different activity patterns, and that individuals consume wildlife at different rates, which all have implications for managing this invasive predator.  相似文献   

2.
Abstract: The endangered Florida Key deer (Odocoileus virginianus clavium) is endemic to the Lower Florida Keys. In recent years, habitat fragmentation and restricted dispersal have resulted in small, isolated herds on some islands. Recovery biologists proposed translocations to increase the island herds that had declined or remained low; however, efficacy of Key deer translocations had yet to be evaluated. Our objective was to evaluate survival, ranges, reproduction, and dispersal of translocated deer. During 2003–2005, we translocated 39 adult or yearling deer to Sugarloaf (approx. 19 km from trap site; 10 M, 14 F) and Cudjoe (approx. 15 km from trap site; 6 M, 9 F) keys. We kept deer in large, high-fenced holding pens (Sugarloaf = 7.7 ha, Cudjoe = 10.7 ha) on the destination islands for 3–6 months (i.e., soft release). We observed low mortality (n = 6 mortalities) of translocated deer with average annual survival (S) of 0.796 for both sexes. We found translocated deer had larger seasonal ranges than did resident deer (i.e., those located on Big Pine and No Name keys). In evaluating effects of acclimation period on ranges and dispersal, we found no difference in 95% ranges or 50% core areas ≤4 month postrelease versus 4–8 months postrelease. We found, however, postrelease dispersal distances were dependent on time kept in pen. Only 2 of 39 (5%) translocated deer left the destination islands by the end of the study. With high survival and low dispersal indicating success, we credit soft release translocation in establishing deer herds on Sugarloaf and Cudjoe keys. Our data support translocations as an effective strategy for creating sustainable outer-island Key deer herds.  相似文献   

3.
Deer (Cervidae) are key components of many ecosystems and estimating deer abundance or density is important to understanding these roles. Many field methods have been used to estimate deer abundance and density, but the factors determining where, when, and why a method was used, and its usefulness, have not been investigated. We systematically reviewed journal articles published during 2004–2018 to evaluate spatio-temporal trends in study objectives, methodologies, and deer abundance and density estimates, and determine how they varied with biophysical and anthropogenic attributes. We also reviewed the precision and bias of deer abundance estimation methods. We found 3,870 deer abundance and density estimates. Most estimates (58%) were for white-tailed deer (Odocoileus virginianus), red deer (Cervus elaphus), and roe deer (Capreolus capreolus). The 6 key methods used to estimate abundance and density were pedestrian sign (track or fecal) counts, pedestrian direct counts, vehicular direct counts, aerial direct counts, motion-sensitive cameras, and harvest data. There were regional differences in the use of these methods, but a general pattern was a temporal shift from using harvest data, pedestrian direct counts, and aerial direct counts to using pedestrian sign counts and motion-sensitive cameras. Only 32% of estimates were accompanied by a measure of precision. The most precise estimates were from vehicular spotlight counts and from capture–recapture analysis of images from motion-sensitive cameras. For aerial direct counts, capture–recapture methods provided the most precise estimates. Bias was robustly assessed in only 16 studies. Most abundance estimates were negatively biased, but capture–recapture methods were the least biased. The usefulness of deer abundance and density estimates would be substantially improved by 1) reporting key methodological details, 2) robustly assessing bias, 3) reporting the precision of estimates, 4) using methods that increase and estimate detection probability, and 5) staying up to date on new methods. The automation of image analysis using machine learning should increase the accuracy and precision of abundance estimates from direct aerial counts (visible and thermal infrared, including from unmanned aerial vehicles [drones]) and motion-sensitive cameras, and substantially reduce the time and cost burdens of manual image analysis.  相似文献   

4.
Automated cameras have become increasingly common for monitoring wildlife populations and estimating abundance. Most analytical methods, however, fail to account for incomplete and variable detection probabilities, which biases abundance estimates. Methods which do account for detection have not been thoroughly tested, and those that have been tested were compared to other methods of abundance estimation. The goal of this study was to evaluate the accuracy and effectiveness of the N-mixture method, which explicitly incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by using camera surveys and a known, marked population to collect data and estimate abundance. Motion-triggered camera surveys were conducted at Auburn University’s deer research facility in 2010. Abundance estimates were generated using N-mixture models and compared to the known number of marked deer in the population. We compared abundance estimates generated from a decreasing number of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, CREPUSCULAR, ALL TIMES). Accurate abundance estimates were generated using 24 h of data and nighttime only data. Accuracy of abundance estimates increased with increasing number of survey days until day 5, and there was no improvement with additional data. This suggests that, for our system, 5-day camera surveys conducted at night were adequate for abundance estimation and population monitoring. Further, our study demonstrates that camera surveys and N-mixture models may be a highly effective method for estimation and monitoring of ungulate populations.  相似文献   

5.
舟山群岛獐的分布   总被引:5,自引:0,他引:5  
郭光普  张恩迪 《兽类学报》2002,22(2):98-107
1999 年7 月至2000 年6 月采用访问和样线法对浙江舟山群岛25 个岛上的獐的分布进行调查。结果显示獐在该地区主要分布在北纬30°26′以南, 东经122°24′以西, 且集中在西南诸岛上。较大岛屿獐的分布比例较高, 10 km2以上的岛屿81.25 %有獐分布。并且其周围小岛獐的分布比例也较高。所调查的5 个距离舟山本岛3 km范围内的小岛均有獐分布。獐所分布的岛屿随着离大陆和本岛距离的增加而减少。獐主要栖息在山丘上, 但夜里常到农田觅食。21.47 %有人居住岛上有獐分布。对獐分布影响较大的因素是离本岛和大陆的距离及岛屿面积; 其次是人类活动, 主要是偷猎; 淡水水源影响不大; 分布与岛屿形状无关。獐可以在岛屿之间迁游, 从而影响分布。獐在舟山地区可能是原有分布的, 几次地质变化可能对其产生一定影响。  相似文献   

6.
ABSTRACT Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ± 0.005 [x̄ ± SE]) and low (S = 0.968 ± 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.  相似文献   

7.
Cameras have been used throughout the world to estimate wildlife abundance and occupancy. Abundance estimates generated by camera surveys tend to be less invasive, less costly, and more accurate than other means in certain situations. We sought to expand and test the effectiveness of camera surveys on sika deer in Maryland. In 2008, we setup surveys with a 7-day pre-bait period followed by a 7-day active camera survey with 15 cameras. In 2009, we ran the cameras for the entire 14-day survey and moved cameras after each survey to determine if biases occur when using the same camera sites. During both years and all surveys, camera density was approximately 1-camera/65-ha. The abundance estimates were similar between years and estimators. In 2009, increasing photo intervals from 1-min to 5- and 10-min intervals reduced the number of pictures by 66 and 81%, respectively, while providing similar abundance estimates. We calculated the daily detection probabilities for all identifiable deer and we used radio-collared males that occurred within 2 km of the survey grid to assist in determining the optimum survey length. Detection probability did not vary between surveys in the same year, but varied between 2008 and 2009, most likely due to unlimited bait being available during 2008 surveys. Camera surveys have proven to be an accurate and cost effective means of estimating wildlife abundance and can be used successfully to determine sika deer abundance.  相似文献   

8.
Densely vegetated environments have hindered collection of basic population parameters on forest-dwelling ungulates. Our objective was to develop a mark–recapture technique that used DNA from fecal pellets to overcome constraints associated with estimating abundance of ungulates in landscapes where direct observation is difficult. We tested our technique on Sitka black-tailed deer (Odocoileus hemionus sitkensis) in the temperate coastal rainforest of Southeast Alaska. During 2006–2008, we sampled fecal pellets of deer along trail transects in 3 intensively logged watersheds on Prince of Wales Island, Alaska. We extracted DNA from the surface of fecal pellets and used microsatellite markers to identify individual deer. With genotypes of individual deer, we estimated abundance of deer with moderate precision (±20%) using mark–recapture models. Combining all study sites, we identified a 30% (SE = 5.1%) decline in abundance during our 3-year study, which we attributed to 3 consecutive severe winters. We determined that deer densities in managed land logged >30 years ago (7 deer/km2, SE = 1.3) supported fewer deer compared to both managed land logged <30 years ago (10 deer/km2, SE = 1.5) and unmanaged land (12 deer/km2, SE = 1.4). Our study provides the first estimates of abundance (based on individually identified deer) for Sitka black-tailed deer and the first estimates of abundance of an unenclosed ungulate population using DNA from fecal pellets. Our tool enables managers to accurately and precisely estimate the abundance of deer in densely vegetated habitats using a non-invasive approach. © 2011 The Wildlife Society.  相似文献   

9.
Recent improvements in genetic analyses have paved the way in using molecular data to answer questions regarding evolutionary history, genetic structure, and demography. Key deer are a federally endangered subspecies assumed to be genetically unique, homogeneous, and have a female-biased population of approximately 900 deer. We used 985 bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses: (1) that Key deer are isolated and have reduced diversity compared to mainland deer and (2) that isolation of the Florida Keys has led to a small population size and a high risk of extinction. Our results indicate that Key deer are indeed genetically isolated from mainland white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain enough diversity to uniquely identify individual deer. Based on genetic identification, we estimated a census size of around 1000 individuals with a heavily skewed female-biased adult sex ratio. Furthermore, our genetic and contemporary demographic data were used to generate a species persistence model of the Key deer. Sensitivity tests within the population viability analysis brought to light the importance of fetal sex ratio and female survival as the primary factors at risk of driving the subspecies to extinction. This study serves as a prime example of how persistence models can be used to evaluate population viability in natural populations of endangered organisms.  相似文献   

10.
Aim Predator–prey dynamics in fragmented areas may be influenced by spatial features of the landscape. Although little is known about these processes, an increasingly fragmented planet underscores the urgency to predict its consequences. Accordingly, our aim was to examine foraging behaviour of an apex mammalian predator, the wolf (Canis lupus), in an archipelago environment. Location Mainland and adjacent archipelago of British Columbia, Canada; a largely pristine and naturally fragmented landscape with islands of variable size and isolation. Methods We sampled 30 mainland watersheds and 29 islands for wolf faeces in summers 2000 and 2001 and identified prey remains. We examined broad geographical patterns and detailed biogeographical variables (area and isolation metrics) as they relate to prey consumed. For island data, we used Akaike Information Criteria to guide generalized linear regression model selection to predict probability of black‐tailed deer (main prey; Odocoileus hemionus) in faeces. Results Black‐tailed deer was the most common item in occurrence per faeces (63%) and occurrence per item (53%) indices, representing about 63% of mammalian biomass. Wolves consumed more deer on islands near the mainland (65% occurrence per item) than on the mainland (39%) and outer islands (45%), where other ungulates (mainland only) and small mammals replaced deer. On islands, the probability of detecting deer was influenced primarily by island distance to mainland (not by area or inter‐landmass distance), suggesting limited recolonization by deer from source populations as a causal mechanism. Main conclusions Although sampling was limited in time, consistent patterns among islands suggest that population dynamics in isolated fragments are less stable and can result in depletion of prey. This may have important implications in understanding predator–prey communities in isolation, debate regarding wolf–deer systems and logging in temperate rain forests, and reserve design.  相似文献   

11.
Spotlight surveys for white-tailed deer (Odocoileus virginianus) can yield large presence-only datasets applicable to a variety of resource selection modeling procedures. By understanding how populations distribute according to a given resource for a reference area, density and abundance can be predicted across new areas assuming the relationship between habitat quality (measured by an index of selection) and species distribution are equivalent. Habitat-based density estimators have been applied to wildlife species and are useful for addressing conservation and management concerns. Although achieving reliable population estimates is a primary goal for spotlighting studies, presence-only models have yet to be applied to spotlight data for estimating habitat selection and abundance for deer. From 2012 to 2017, we conducted spring spotlight surveys in each of 99 counties in Iowa, USA, and collected spatial locations for 20,149 groups of deer (n = 71,323 individuals). We used a resource selection function (RSF) based on deer locations to predict the relative probability of use for deer at the population level and to estimate statewide abundance. The number of deer observed statewide increased significantly with increasing RSF value for all years and the mean RSF value along survey transects explained 59% of the variability in county-level deer counts, indicating that a functional response between habitat quality and deer distribution existed at landscape scales. We applied our RSF to a habitat-based density estimator (extrapolation) and zero-inflated Poisson (ZIP) and negative binomial (ZINB) count models to predict statewide abundance from spotlight counts. Population estimates for 2012 were variable, indicating that atypical weather conditions may affect spotlight counts and population estimates in some years. For 2013–2017, we predicted a mean population of 439,129 (95% CI ∼ ± 55,926), 440,360 (∼ ± 43,676), and 465,959 (∼ ± 51,242) deer across years for extrapolation, ZIP, and ZINB models, respectively. Estimates from all models were not significantly different than estimates from an existing deer population accounting model in Iowa for 2013 and 2016, and differed by <76,000 deer for all models from 2013–2017. Extrapolation and ZIP models performed similarly and differed by <2,897 deer across all years, whereas ZINB models showed inconsistencies in model convergence and precision of estimates. Our results indicate that presence-only models are capable of producing reliable and precise estimates of resource selection and abundance for deer at broad landscape scales in Iowa and provide a tool for estimating deer abundance in a spatially explicit manner. © 2019 The Wildlife Society.  相似文献   

12.
13.
Deer can have severe effects on plant communities, which in turn can affect insect communities. We studied the effects of Key deer herbivory on the incidence of insect herbivores that occur within deer habitats in the lower Florida Keys, within the National Key Deer Refuge (NKDR). We analyzed plant chemistry (tannins, nitrogen) and surveyed for the occurrence of insects (above the browse tier) among plant species that were either deer-preferred or less-preferred. Results indicated higher levels of foliar tannins on islands with fewer Key deer and larger amounts of foliar nitrogen on islands with a high density of Key deer. Consequently, leaf miners were significantly more abundant on islands with high deer density, irrespective of deer-preference of plant species. On islands with a high deer density, incidence of leaves damaged by chewing insects was lower on preferred plant species but greater on less-preferred species than on islands with fewer deer. No apparent patterns were evident in the distribution of leaf gallers among plant species or islands with different deer density. Our results imply that plant nutrition levels—either preexisting or indirectly affected by deer deposition—are more important than plant defenses in determining the distribution of insect herbivores in the NKDR. Although high densities of the endangered Key deer have negative effects on some plant species in the NKDR, it seems Key deer might have an indirect positive influence on insect incidence primarily above the browse tier. Further research is warranted to enable fuller understanding of the interactions between Key deer and the insect community.  相似文献   

14.
Using our results and literature data on multilocus DNA fingerprinting, we propose a method of obtaining unbiased estimates of the between--population genetic similarity index and a measure of population subdivision based on modified Wright's FST-statistics. On the basis of multiple comparison T2 Hotelling's test and Holmes' procedure, the FST-statistics was applied to assess differentiation of four (Pacific and Atlantic) subpopulations of humpback whale Megaptera novaeangliae, six populations of California island gray fox Urocyon littoralis, and geographically isolated Ob' and Yakutia populations of Siberian white crane Crus leucogeranus. It was shown that the regional humpback whale subpopulations do not constitute a single panmictic unit (P < 10(-4)). The subdivision index of the Pacific and Atlantic populations expressed in terms of FST-statistics varied from 0.101 to 0.157. The differentiation estimates for the island fox populations, which ranged from 0.2109 to 0.4027, indicate that subdivision of these populations is a function of the distance between the islands, island size, and population size. In particular, the smallest and the greatest differences were found respectively between the populations of the geographically closest northern islands (FST = 0.2157, FST = 0.2109) and between those of the most distant northern and southern islands (FST = 0.4027, FST = 0.3869). Subdivision of the island populations with minimum areas and low population number was intermediate (FST = 0.3789). Mean values of heterozygosity, within-population genetic similarity index, and the number of coinciding fragments for two random individuals of Siberian white crane from the Ob' and Yakutia population were not statistically significantly different (P > or = 0.852, (P > or = 0.491, (P > or = 0.325). However, pairwise comparisons of mean FST values indicated that the differentiation estimates for samples from these populations fall within the limits of population subdivision (P = 0.01). The subdivision estimate (0.108-0.133) of various groups of Siberian white cranes is comparable to interregional subdivision of humpback whale. Based on the results of this study, we recommend the approach based on modified Wright's FST-statistics for studying genetic population structure aimed at detecting population subdivision.  相似文献   

15.
Despite of the generalized expansion of wild ungulates in Europe, roe deer (Capreolus capreolus) is experiencing contrasted population trends; it is expanding in some regions while declining in others likely due to the expansion of other deer species. In both extremes, reliable methods to estimate population abundance are required. We evaluated different methods of estimating deer abundance in Mediterranean woodlands based on pellet group counts. Distance Sampling applied to pellet counts and a new easier and cost-effective method based on strip-variable transect counts (FST) were assessed comparing their estimates (pellet group density) with the abundance indices obtained from traditionally used reference methods (faecal standing crop) in 61 localities (n = 183 surveys). The average roe deer density estimated from faecal standing crop was 5.56 ± 0.75 (range 0.01–20.74) deer per 100 ha. Distance Sampling and FST estimates correlated with reference methods. As a first conclusion it may be noted that all indirect methods used here can be used to estimate roe deer abundance. The selection of a given method based on pellet counts to estimate roe deer population abundance should take into account the specific objectives of the research, resources available, and the timescale in which the information is required. Among them, Distance Sampling may be used when human resources and skills are enough but FST is a rapid and efficient alternative to estimate pellet group density when they are not.  相似文献   

16.
To investigate genetic diversity among populations of the sika deer, Cervus nippon, nucleotide sequences (705-824 bases) of the mitochondrial D-loop regions were determined in animals from 13 localities in the Japanese islands. Phylogenetic trees constructed by the sequences indicated that the Japanese sika deer is separated into two distinct lineages: the northern Japan group (the Hokkaido island and most of the Honshu mainland) and the southern Japan group (a part of the southern Honshu mainland, the Kyushu island, and small islands around the Kyushu island). All sika deer examined in this study shared four to seven units of repetitive sequences (37 to 40 bases each) within the D-loop sequences. The number of tandem repeats was different among the populations, and it was specific to each population. Six or seven repeats occurred in populations of the northern Japan group, while four or five repeats occurred in populations of the southern Japan group. Each repeat unit included several nucleotide substitutions, compared with others, and 26 types were identified from 31 animals. Sequences of the first, second, and third units in arrays were clearly different between the northern and the southern groups. Based on these D-loop data, colonization and separation of the sika deer populations in the Japanese islands were estimated to have occurred less than 0.5 million years before present. Our results provide an invaluable insight into better understanding the evolutionary history, phylogeny, taxonomy, and population genetics of the sika deer.  相似文献   

17.
To investigate genetic diversity among populations of the sika deer, Cervus nippon, nucleotide sequences (705–824 bases) of the mitochondrial D-loop regions were determined in animals from 13 localities in the Japanese islands. Phylogenetic trees constructed by the sequences indicated that the Japanese sika deer is separated into two distinct lineages: the northern Japan group (the Hokkaido island and most of the Honshu mainland) and the southern Japan group (a part of the southern Honshu mainland, the Kyushu island, and small islands around the Kyushu island). All sika deer examined in this study shared four to seven units of repetitive sequences (37 to 40 bases each) within the D-loop sequences. The number of tandem repeats was different among the populations, and it was specific to each population. Six or seven repeats occurred in populations of the northern Japan group, while four or five repeats occurred in populations of the southern Japan group. Each repeat unit included several nucleotide substitutions, compared with others, and 26 types were identified from 31 animals. Sequences of the first, second, and third units in arrays were clearly different between the northern and the southern groups. Based on these D-loop data, colonization and separation of the sika deer populations in the Japanese islands were estimated to have occurred less than 0.5 million years before present. Our results provide an invaluable insight into better understanding the evolutionary history, phylogeny, taxonomy, and population genetics of the sika deer.  相似文献   

18.
Overabundant populations of ungulates have caused environmental degradation and loss of biological diversity in ecosystems throughout the world. Culling or regulated harvest is often used to control overabundant species. These methods are difficult to implement in national parks, other types of conservation reserves, or in residential areas where public hunting may be forbidden by policy. As a result, fertility control has been recommended as a non-lethal alternative for regulating ungulate populations. We evaluate this alternative using white-tailed deer in national parks in the vicinity of Washington, D.C., USA as a model system. Managers seek to reduce densities of white-tailed deer from the current average (50 deer per km2) to decrease harm to native plant communities caused by deer. We present a Bayesian hierarchical model using 13 years of population estimates from 8 national parks in the National Capital Region Network. We offer a novel way to evaluate management actions relative to goals using short term forecasts. Our approach confirms past analyses that fertility control is incapable of rapidly reducing deer abundance. Fertility control can be combined with culling to maintain a population below carrying capacity with a high probability of success. This gives managers confronted with problematic overabundance a framework for implementing management actions with a realistic assessment of uncertainty.  相似文献   

19.
20.
ABSTRACT The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号