首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
DNA组装技术     
DNA组装是合成生物学研究的核心技术。随着合成生物学的发展,研究者开发了依赖于DNA聚合酶或DNA连接酶的不同DNA组装技术;为了降低组装成本和便于实现DNA组装的自动化,也发展了一些非酶依赖的DNA组装技术;而几百kb到Mb的大片段DNA的组装则多数依赖于微生物体内重组。文中主要综述了酶依赖、非酶依赖和体内同源重组三类DNA组装技术及其发展情况。  相似文献   

2.
DNA组装技术是合成生物学的关键共性技术。目前,小分子DNA组装大多采用体外组装策略,而大分子DNA的组装则更多地借助宿主自身的重组机制在体内完成,常用的宿主包括酿酒酵母、大肠杆菌和枯草芽孢杆菌等。本文中,笔者综述了近年来体内大分子DNA组装的研究进展。  相似文献   

3.
DNA组装与转移技术是合成生物学的核心使能技术之一,生命体设计改造的复杂度不断提升,使得对大片段DNA组装与转移技术的需求也日益旺盛。小片段DNA的组装与转移技术目前已经比较成熟,大片段DNA由于其分子量大、易断裂,使得体外操作繁琐且效率低下。聚焦酿酒酵母体内组装和转移的技术进展,详细介绍了基于酿酒酵母一次组装和迭代组装的不同方法,并从导入与导出的角度介绍了大片段DNA的转移技术,便于研究者更好地理解和选择酿酒酵母体内组装与转移技术。此外,还展望了将酿酒酵母开发为大片段DNA组装与转移通用平台实现更多物种基因组大尺度设计改造的愿景。  相似文献   

4.
基因组序列的功能分析以及代谢途径的构建改造等都需要克隆目的DNA。获得大片段DNA序列的方法有构建和筛选基因文库,PCR扩增,体外大片段DNA合成和组装等,但体内重组直接克隆的方法在操作、克隆长片段和应用等方面更具优势。介绍了Red/ET重组介导的大片段DNA体内直接克隆的主要方法及其应用。  相似文献   

5.
SLiCE(seamless ligation cloning extract)是一种利用细胞裂解物体外无痕组装DNA的方法。针对细胞裂解物来源、λ重组系统的表达及组装片段摩尔比例等方面对现有SLiCE方法进行优化。首先,排除了酿酒酵母和枯草芽孢杆菌的细胞裂解物在现阶段用于体外组装的可能性。同时,在大肠杆菌DH10B中导入L-阿拉伯糖诱导表达的λ重组系统,验证所构建的大肠杆菌的细胞裂解物可在体外拼接DNA片段,并将该种来源细胞裂解物用于后续组装。其次,设计并构建根据转化子颜色筛选阳性克隆的方法,并以该方法计算不同摩尔比例片段组装时的正确率。最后,使用优化过的SLiCE方法,成功组装可在酿酒酵母体内表达的黑色素合成模块。  相似文献   

6.
史晏榕  孙宇辉 《微生物学通报》2015,42(11):2229-2237
DNA克隆和组装技术是重要的分子生物学工具。近年来,随着合成生物学的飞速发展,对大片段DNA元件的快速有效组装就显得尤为关键。同时,各种DNA克隆和组装技术也竞相发展起来。通过对基于非典型酶切连接、PCR、同源重组、单链退火拼接等原理发展起来的各种DNA克隆和组装技术进行综述,为合成生物学的进一步发展提供有效的操作工具。  相似文献   

7.
合成生物学具有巨大发展潜力,作为一门新兴学科,它有效结合了科学与工程,在生物制药、环保、农业、物质能源等方面发挥了巨大的作用。而DNA组装技术是合成生物学中的关键技术,DNA组装技术研究进展极大的限制了合成生物学的快速发展本文在简述合成生物学发展的基础上,基于DNA组装的基本理念,对主要DNA组装技术发展情况及其在合成生物学发展中的意义及应用进行了研究,为DNA组装技术的应用发展提供参考与借鉴。  相似文献   

8.
合成生物学的迅猛发展使其在各个领域得到了广泛应用,底盘设计、元件组装、代谢网络的从头构建、大片段DNA克隆、多片段DNA拼接等合成生物学技术的开发和利用大大提高了工业生物技术的竞争力.聚羟基脂肪酸酯(PHA)是一种具有生物可降解和生物相容性等优良特性的生物塑料,可以在许多细菌胞内合成,已经被开发应用于多个领域.但是,PHA高昂的生产成本阻碍了其大规模应用.基于合成生物学研究而得到的新方法、新技术可以改变细菌生长模式、生长条件以及细菌形态,从而进一步降低PHA的生产成本.另一方面,通过改造细菌基因组如弱化?-氧化途径可以得到不同种类的重组菌株,用于生产具有不同性能的包括无规共聚物、嵌段共聚物、带有官能团的聚合物等在内的新型多功能PHA材料.合成生物学的应用开创了低成本、高附加值的PHA材料生产的新时代,为PHA的产业化奠定了坚实的基础.  相似文献   

9.
基因组装技术是合成生物学领域近年来发展起来的新型技术。它基于大规模基因组数据分析,发现新型的或隐藏的生物活性物质合成基因簇。利用基因组装技术,可提高或激活沉默的生物合成基因簇在微生物中的表达,从而合成潜在的、有价值的生物活性物质。本文旨在阐明最新的体内和体外基因组装技术的设计原理、关键策略及其应用。基因组装技术是合成生物学、代谢工程和功能基因组学研究的重要工具,对生物活性物质的高效生产及合成具有重要意义。  相似文献   

10.
铁硫簇是普遍存在于生物体中的最古老的生命物质之一.铁硫簇基本结构单元有[2Fe-2S]、[3Fe-4S]、[4Fe-4S]及.[8Fe-7S]等几种形式,不同结构的铁硫簇具有不同的生物学功能,主要包括参与电子传递、底物的结合与激活、铁/硫的存储、基因表达的调控、酶活的调控等.铁硫簇既可在生物体内合成,也可在体外进行人工组装.铁硫簇的生物合成主要和NIF、ISC、SUF这三个系统有关.研究已确定了参与铁硫簇合成的关键蛋白,但对它们分子水平上的机制及如何进行相互作用在体内外合成铁硫簇的认识尚待进一步研究.  相似文献   

11.
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.  相似文献   

12.
Li MZ  Elledge SJ 《Nature methods》2007,4(3):251-256
We describe a new cloning method, sequence and ligation-independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.  相似文献   

13.
Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named p GF(plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid p CC1 BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome(YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction(PCR) from the plasmid p BS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination(TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using p GF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction.  相似文献   

14.
Studies in the structural biology of the multicomponent protein complex, metabolic engineering, and synthetic biology frequently rely on the efficient over-expression of these subunits or enzymes in the same cell. As a first step, constructing the multiple expression cassettes will be a complicated and time-consuming job if the classic and conventional digestion and ligation based cloning method is used. Some more efficient methods have been developed, including (1) the employment of a multiple compatible plasmid expression system, (2) the rare-cutter-based design of vectors, (3) in vitro recombination (sequence and ligation independent cloning, the isothermally enzymatic assembly of DNA molecules in a single reaction), and (4) in vivo recombination using recombination-efficient yeast (in vivo assembly of overlapping fragments, reiterative recombination for the chromosome integration of foreign expression cassettes). In this review, we systematically introduce these available methods.  相似文献   

15.
Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications.  相似文献   

16.
With the advent of synthetic biology and cell engineering, the demand for large synthetic DNA fragments has been steadily increasing. Consequently, a number of multi-fragment cloning technologies optimized for the assembly of sizable DNA constructs have been developed. Still, screening for the right clone can be tedious because the high incidence of illegitimate assembly results in a relatively large proportion of missing or shuffled DNA elements. To mitigate this risk, we have developed a strategy that reduces the rate of fragment mis-assembly and is compatible with a variety of cloning methodologies. The approach is based on the positive selection of truncated plasmid markers, which are rendered active by providing their missing sequences during the assembly process. The method has been successfully validated in the context of complex in vivo and in vitro homologous recombination workflows, but it could be readily adapted to other cloning strategies, including those based on restriction endonucleases.  相似文献   

17.
Robust synthetic biology applications rely heavily on the design and assembly of DNA parts with specific functionalities based on engineering principles. However, the assembly standards adopted by different communities vary considerably, thus limiting the interoperability of parts, vectors and methods. We hereby introduce the SEVA 3.1 platform consisting of the SEVA 3.1 vectors and the Golden Gate-based ‘SevaBrick Assembly’. This platform enables the convergence of standard processes between the SEVA platform, the BioBricks and the Type IIs-mediated DNA assemblies to reduce complexity and optimize compatibility between parts and methods. It features a wide library of cloning vectors along with a core set of standard SevaBrick primers that allow multipart assembly and exchange of short functional genetic elements (promoters, RBSs) with minimal cloning and design effort. As proof of concept, we constructed, among others, multiple sfGFP expression vectors under the control of eight RBSs, eight promoters and four origins of replication as well as an inducible four-gene operon expressing the biosynthetic genes for the black pigment proviolacein. To demonstrate the interoperability of the SEVA 3.1 vectors, all constructs were characterized in both Pseudomonas putida and Escherichia coli. In summary, the SEVA 3.1 platform optimizes compatibility and modularity of inserts and backbones with a cost- and time-friendly DNA assembly method, substantially expanding the toolbox for successful synthetic biology applications in Gram-negative bacteria.  相似文献   

18.
Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a~40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号