首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Boron is a necessary nutrient for plants and animals, however excess of it causes toxicity. Previously, Atr1 and Arabidopsis Bor1 homolog were identified as the boron efflux pump in yeast, which lower the cytosolic boron concentration and help cells to survive in the presence of toxic amount of boron. In this study, we analyzed ATR1 paralogs, YMR279c and YOR378w, to understand whether they participate in boron stress tolerance in yeast. Even though these genes share homology with ATR1, neither their deletion rendered cells boron sensitive nor their expression was significantly upregulated by boron treatment. However, expression of YMR279, but not YOR378w, from the constitutive GAPDH promoter on a high copy plasmid provided remarkable boron resistance by decreasing intracellular boron levels. Thus our results suggest the presence of a third boron exporter, YMR279c, which functions similar to ATR1 and provides boron resistance in yeast.  相似文献   

2.
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl fluxes. Neither Na+ nor Cl appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km 1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3 does not affect boron extrusion by Bor1p, indicating that HCO3 does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner (10). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain. boron; SLC4; YNL275w  相似文献   

3.
Physiological responses of two poplar species to high boron stress   总被引:2,自引:0,他引:2       下载免费PDF全文
 近年来国外学者发现杨树(Populus spp.)对硼表现出很强的富集能力和极强的耐受能力, 但其耐硼胁迫的生理机制和种间差异仍不清楚。该研究通过两年的硼梯度控制试验, 探讨了硼胁迫对欧洲黑杨杂交种俄罗斯杨(Populus russkii)和银白杨变种新疆杨(P. bolleca)的生长和生理指标的影响。结果表明, 新疆杨的耐高硼能力高于俄罗斯杨, 其高硼伤害阈值(EC10)为35 mg·kg–1, 俄罗斯杨为19 mg·kg–1。两种杨树的过氧化氢酶(CAT)和愈创木酚过氧化物酶(Gu-POD)活性随硼浓度升高而升高, 超过EC10后显著下降。尽管两种杨树的叶绿素含量和光化学效率在硼胁迫下降低, 但抗硼胁迫能力较强的新疆杨仍然保持了较高的叶绿素a/b值和热耗散能力(非光化学淬灭升高), 因此有效地保护了该树种的光合能力。两种杨树的可溶性糖含量随硼胁迫加重而适应性升高, 以维持其抗渗透能力, 但其叶片可溶性蛋白含量仅在中低强度的硼胁迫条件下有所升高。该研究明确了两个富集硼的杨树种对高硼胁迫的生理响应及其种间差异。  相似文献   

4.
Boron tolerance is a quantitative trait controlled by multiple genes. Suppression subtractive hybridization was carried out on root cDNA from bulked boron tolerant and intolerant doubled haploid barley lines grown under moderate boron stress to identify genes associated with boron tolerance. One hundred and eleven clones representing known proteins were found to be up‐regulated in the tolerant bulk upon boron stress. Nine clones were genetically mapped to previously reported boron tolerance QTL. These include a clone identical to the boron transporter gene Bot1 and a clone coding for a bromo‐adjacent homology domain‐containing protein, mapping to the 6H boron tolerance locus and co‐segregating with reduced boron intake in a Clipper × Sahara‐3771 mapping population. A third clone mapping to the 2H QTL region encoding an S‐adenosylmethionine decarboxylase precursor was found to provide tolerance to high boron by heterologous expression. Yeast cells expressing Sahara SAMDC were able to grow on 15 mm boron solid media and maintained cellular boron concentrations at 13% lower than control cells expressing empty vector. The data suggest that an antioxidative response mechanism involving polyamines and the ascorbate–glutathione pathway in Sahara barley may provide an advantage in tolerating high soil concentrations of boron.  相似文献   

5.
Boron adsorption onto activated sludge was investigated using bench-scale reactors under simulated wastewater treatment conditions. Two experiments, continuous flow and batch, were performed. Boron concentrations were determined by means of inductively coupled plasma mass spectrometry. The results of the continuous-flow experiment indicated that a small amount of boron accumulated on the activated sludge and its concentration in the sludge depended on the nature of the biota in the sludge. Freundlich and Langmuir isotherm plots generated using the data from the batch experiment indicated that boron was adsorbed onto rather than absorbed into the sludge. The Freundlich constants, k and 1/n, were determined to be 26 mg/kg and 0.87. These values indicate that activated sludge has a limited capacity for boron adsorption and thus utilization of the excess sludge for farmland may not be toxic to plant at least boron concern.  相似文献   

6.
The roles of three membrane proteins, BOR1, DUR3, and FPS1, in boron (B) transport in yeast were examined. The boron concentration in yeast cells lacking BOR1 was elevated upon exposure to 90 mM boric acid, whereas cells lacking DUR3 or FPS1 showed lower boron concentrations. Compared with control cells, cells overexpressing BOR1 or FPS1 had a lower boron concentration, and cells overexpressing DUR3 had a higher boron concentration. These results suggest that, in addition to the efflux boron transporter BOR1, DUR3 and FPS1 play important roles in regulating the cellular boron concentration. Analysis of the yeast transformants for tolerance to a high boric acid concentration revealed an apparent negative correlation between the protoplasmic boron concentration and the degree of tolerance to a high external boron concentration. Thus, BOR1, DUR3, and FPS1 appear to be involved in tolerance to boric acid and the maintenance of the protoplasmic boron concentration.  相似文献   

7.
Asad  A.  Bell  R.W.  Dell  B.  Huang  L. 《Plant and Soil》1997,188(1):21-32
Chelated-buffered nutrient solutions are used for studies on micronutrient metals but so far no equivalent system exists for boron nutrition studies: the present investigation was initiated with that intention. From a literature review, it was noted that a range of substances form chelates with boron including polyhydric alcohols, sugars and phenolic compounds. However, none apart from hydrofluoric acid formed chelates with formation constants comparable to those of micronutrient metal chelates like diethylenetriaminepentaacetic acid (DTPA). Moreover, most chelating substances had deleterious side effects which reduced their possible use in water culture: many of the compounds are substrates for bacterial growth, some are harmful to handle, and others are toxic to plants or humans. Borosilicate glass; was tested in a laboratory experiment but found to release boron too slowly into solution to maintain constant boron concentration in solution even when very finely ground. Current investigations centre around the use of a boron-specific resin, which strongly complexes H3BO3 on its N-methyl glucamine functional groups. The boron sorption capacity of the resin varied from 2.2 to 5.0 mg B g-1 resin. Boron saturated resin maintained an equilibrium solution boron concentration of 46 t M when added at the rate of 2 g of resin to 1 L of boron free triple deionised water. Plants grown in complete nutrient solution with boron saturated resin added at 1 g per litre of nutrient solution grew as well as plants grown in conventional nutrient solution containing 9.2 t M boron and their shoots contained adequate boron concentrations for growth. There was no evidence that the resin had effects on plant growth other than in releasing and equilibrating boron concentration in the nutrient solution.  相似文献   

8.
9.
Boron is an essential plant micro-nutrient which can be phytotoxic to plants if present in soils in high concentration. Boron toxicity has been recognised as an important problem limiting production in the low rainfall areas of southern Australia, West Asia and North Africa. Genetic variation for boron toxicity tolerance in wheat has been well-characterised. The efficiency of breeding for boron toxicity tolerance could be greatly enhanced by the development of molecular markers associated with QTLs for tolerance in wheat. A population of 161 doubled haploids from a cross between the tolerant cultivar Halberd and the moderately sensitive cultivar Cranbrook was used to identify chromosomal regions involved in boron tolerance. A combined RFLP and AFLP linkage map of the Cranbrook x Halberd population was used to identify chromosomal regions involved in the boron tolerance traits measured. Regions on chromosome 7B and 7D were associated with leaf symptom expression. The region on chromosome 7B was also associated with the control of boron uptake and with a reduction in the effect of boron toxicity on root-growth suppression. RFLP markers at the chromosome 7B and 7D loci were shown to be effective in selecting for improved boron tolerance in an alternative genetic background. Halberd alleles at the chromosome 7B locus were associated with the concentration of boron in whole shoots and grain. The concentration of boron in whole shoots and in grain were both related to grain yield in a field trial conducted on soil containing toxic levels of boron. Implications relating to marker-assisted selection for boron toxicity tolerance in wheat are discussed. Received: 3 September 1999 / Accepted: 12 February 2000  相似文献   

10.
Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5; 1(OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR(qRT-PCR) results demonstrated that the expression of AtTIP5;l was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5; 1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;I is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity.  相似文献   

11.
Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance.Boron has been proposed as an important micronutrient in plants and animals. Studies have shown the presence of several genes associated with boron transport and tolerance in plants (18, 25, 27); however, boron transport mechanisms in other organisms, including animals, remain unclear. In plants, boron functions as a cross-linker for rhammogalacturanon II in the cell membrane (9, 14, 21) and also as a structural component in cytoskeleton assembly (1). Arabidopsis thaliana BOR1 was the first gene shown to play a role in boron tolerance (28). Homologs of BOR1 were found in many organisms, including yeasts, plants, and mammals (22, 25, 29). A high level of boron leads to degradation of its own exporter, BOR1, in A. thaliana (27), and A. thaliana BOR1 cannot be used to produce genetically modified plants that grow in soil with high boron levels. However, transgenic plants expressing BOR4, one of six paralogs of BOR1, showed high tolerance to toxic levels of boron (18). Multicopy expression of BOT1, a BOR1 ortholog, provided boron tolerance to barley (25).The yeast Saccharomyces cerevisiae has been used as a model organism for characterization of plant boron tolerance genes (19, 20, 25, 26, 29). While 10 mM boric acid is lethal to Arabidopsis (18), yeast can grow in the presence of 80 mM boron and is considered a boron-tolerant organism (19, 20). Yeast Bor1 was characterized in detail (10). This protein is localized to the plasma membrane and functions as a boric acid exporter (26). The bor1Δ yeast strain overaccumulates boron (20, 28), and cells that overexpress BOR1 have less intracellular boron and show resistance to boron treatment (20). In addition to Bor1, two other proteins, Dur3 and Fps1, have been implicated in boron tolerance in yeast, but their functions are not clear (20). Dur3 is a plasma membrane transporter that plays a role in urea and polyamine transport (5, 31), and Fps1 is a member of the major intrinsic protein family and plays a role in glycerol, acetic acid, arsenite, and antimonite transport (16, 30, 33). Overexpression of FPS1 and DUR3 showed controversial effects on cellular boron levels. While FPS1 expression lowered the protoplasmic boron concentration, DUR3 expression led to a small increase in boron (20).The objective of this study was to identify proteins that are primarily responsible for boron transport in yeast. ATR1 was identified as a boron tolerance gene by screening a yeast DNA expression library. Yeast Atr1 is a member of the DHA2 family of drug-H+ antiporters with 14 predicted membrane-spanning segments (7). It was first characterized in a genetic screen as a high-copy-number suppressor of the 3-amino-1,2,4-triazole sensitivity of gcn4Δ mutants (11). It also conferred resistance to the DNA-damaging agent 4-nitroquinoline-N-oxide in a separate genetic screen (17). In this study, we demonstrated that high-copy-number expression of ATR1 conferred extreme resistance to boron and reduced intracellular levels of the element, whereas cells lacking the ATR1 gene were hypersensitive to boron and increased its intracellular levels. We analyzed changes in the global gene expression profile in response to boron and found that ATR1 is the most induced transporter gene. The Atr1-green fluorescent protein (GFP) fusion protein localized to the plasma membrane and vacuole. Taken together, our data show that Atr1 functions as a major boron efflux pump and provides tolerance of the element by pumping boron out of cells.  相似文献   

12.
植物对硼元素的吸收转运机制   总被引:5,自引:0,他引:5  
硼是植物生长发育所必需的微量元素,但是在世界范围内,土壤中硼含量过高或者过低都会对植物生长产生影响,是农业生产上的主要问题.近来人们对硼的吸收转运机制的研究取得了突破性进展,鉴定了一些硼的转运通道和转运蛋白,例如:NIP5;1、NIP6;1、BOR1和BOR4,并对它们的转运机制有了一些了解.植物在硼缺少的情况下首先通过转运通道NIP5;1把硼吸收到共质体,然后通过转运蛋白BOR1运入中柱;在高硼毒害时,通过转运蛋白BOR4把过多的硼转出植物体,同时在植物中增加糖醇的含量,过表达BOR1或BOR4都能改变植物对硼含量变化的耐受性.因此,对植物中硼吸收转运机制的研究将有利于人们通过生物学手段提高作物对土壤中硼过高或过低的抗性.  相似文献   

13.
Alpaslan  M.  Gunes  A. 《Plant and Soil》2001,236(1):123-128
A greenhouse study was conducted in order to determine interactive effects of NaCl salinity and B on the growth, sodium (Na), chloride (Cl), boron (B), potassium (K) concentrations and membrane permeability of salt resistant Tomato (Lycopersicon esculentum L. cv. Lale F1) and salt sensitive cucumber (Cucumis sativus L. cv. Santana F1) plants. Plants were grown in a factorial combination of NaCl (0 and 30 mM for cucumber and 0 and 40 mM for tomato) and B (0, 5, 10 and 20 mg kg–1 soil). Boron toxicity symptoms appeared at 5 mg kg–1 B treatments in both plants. Salinity caused an increase in leaf injury due to B toxicity, but it was more severe in cucumber. Dry weights of the plants decreased with the increasing levels of applied B in nonsaline conditions, but the decrease in dry weights due to B toxicity was more pronounced in saline conditions especially in cucumber. Salinity × B interaction on the concentration of B in both plants was found significant. However, increase in B concentrations of tomato decreased under saline conditions when compared to nonsaline conditions. Contrary to this, B concentration of cucumber increased as a result of increasing levels of applied B and salinity. Salinity increased Na and Cl concentrations of both plants.Potassium concentration of tomato was not affected by salinity and B treatments, but K concentration of cucumber was decreased by salinity. Membrane permeability of the plants was increased by salinity while toxic levels of B had no effect on membrane permeability in nonsaline conditions. Membrane permeability was significantly increased in the presence of salinity by the increasing levels of applied B.  相似文献   

14.
Recently, we demonstrated that boron modulates the turnover of the extracellular matrix and increases TNFalpha release. In the present study, we used an in vitro test to investigate the direct effect of boron on specific enzymes (elastase, trypsin-like enzymes, collagenase and alkaline phosphatase) implicated in extracellular matrix turnover. Boron decreased the elastase and alkaline phosphatase activity, but had no effect on trypsin and collagenase activities. The effect of boron on the enzyme activities was also tested in fibroblasts considered as an in vivo test. In contrast to the results obtained in vitro, boron enhanced the trypsin-like, collagenase, and cathepsin D activities in fibroblasts. Boron did not modify the generation of free radicals compared to the control and did not seem to act on the intracellular alkaline phosphatase activity, However, as it did enhance phosphorylation, it can be hypothesized that boron may affect living cells via a mediator, which could be TNFalpha whose transduction signal involves a cascade of phosphorylations.  相似文献   

15.
Btn2p, a novel cytosolic coiled-coil protein in Saccharomyces cerevisiae, was previously shown to interact with and to be necessary for the correct localization of Rhb1p, a regulator of arginine uptake, and Yif1p, a Golgi protein. We now report the biochemical and physical interactions of Btn2p with Ist2p, a plasma membrane protein that is thought to have a function in salt tolerance. A deletion in Btn2p (btn2Delta strains) results in a failure to correctly localize Ist2p, and strains lacking Btn2p and Ist2p (btn2Delta ist2Delta strains) are unable to grow in the presence of 0.5 or 1.0 M NaCl. Btn2p was originally identified as being up-regulated in a btn1Delta strain, which lacks the vacuolar-lysosomal membrane protein, Btn1p, and serves as a model for Batten disease. This up-regulation of Btn2p was shown to contribute to the maintenance of a stable vacuolar pH in the btn1Delta strain. Btn1p was subsequently shown to be required for the optimal transport of arginine into the vacuole. Interestingly, btn1Delta ist2Delta strains are also unable to grow in the presence of 0.5 or 1.0 M NaCl, and ist2Delta suppresses the vacuolar arginine transport defect in btn1Delta strains. Although further investigation is required, we speculate that altered vacuolar arginine transport in btn1Delta strains represents a mechanism for maintaining or balancing cellular ion homeostasis. Btn2p interacts with at least three proteins that are seemingly involved in different biological functions in different subcellular locations. Due to these multiple interactions, we conclude that Btn2p may play a regulatory role across the cell in response to alterations in the intracellular environment that may be caused by changes in amino acid levels or pH, a disruption in protein trafficking, or imbalances in ion homeostasis resulting from either genetic or environmental manipulation.  相似文献   

16.
Niacin (Nicotinic acid, B3 vitamin) may be involved in reduction of toxic effects of boron by regulating growth metabolism. This study was designed to examine whether external niacin treatment would improve the boron mobility in carrot callus cells or not. The results showed that excess boron caused tracheary inversions in meristematic root tissue, and also a shortage was seen in tracheary lengths with boric acid treatment. Boron excess induced the plant tolerance to water stress inverting the tracheary cells. This shortage converted nearly to normal size with niacin and boron treatment together. The results showed that boron mobility induced by niacin could reduce significantly the fresh and dry weight of carrot root cells, protein and ABA content was reduced also, in contrary, external boron and boron with niacin treatment considerable increased the two factors after one month stress. Fresh weight reduction and ABA content reduction indicated that niacin treatment caused water stress on the root cells of carrot, but boron treatment and boron with niacin treatment increased drought tolerance in carrot cells by increasing the both factors. In addition, turning the conversion of the length of the trachearies to their normal size proved that niacin treatment ended the polarizing effects of boron on cell walls.  相似文献   

17.
Boron is an essential micronutrient for plant growth and the boron content of plants differs greatly, but the mechanism(s) of its uptake into cells is not known. Boron is present in the soil solution as boric acid and it is in this form that it enters the roots. We determined the boron permeability coefficient of purified plasma membrane vesicles obtained from squash (Cucurbita pepo) roots and found it to be 3 x 10(-7) +/-1.4 x 10(-8) cm s(-1), six times higher than the permeability of microsomal vesicles. Boric acid permeation of the plasma membrane vesicles was partially inhibited (30%-39%) by mercuric chloride and phloretin, a non-specific channel blocker. The inhibition by mercuric chloride was readily reversible by 2-mercaptoethanol. The energy of activation for boron transport into the plasma membrane vesicles was 10.2 kcal mol(-1). Together these data indicate that boron enters plant cells in part by passive diffusion through the lipid bilayer of the plasma membrane and in part through proteinaceous channels. Expression of the major intrinsic protein (MIP) PIP1 in Xenopus laevis oocytes resulted in a 30% increase in the boron permeability of the oocytes. Other MIPs tested (PIP3, MLM1, and GlpF) did not have this effect. We postulate that certain MIPs, like those that have recently been shown to transport small neutral solutes, may also be the channels through which boron enters plant cells.  相似文献   

18.
High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.Key words: Bor genes, boron tolerance, boron toxicity, efflux pumping, leaf necrosis, membrane transportB-toxic soils are widespread throughout agricultural areas of the world where they cause significant and often substantial reductions in crop quality and yield. The mechanism by which B is toxic to plants is not well understood1 but toxicity symptoms include reduced root growth which affects uptake of water and nutrients, and the development of necrotic patches on leaves which impairs photosynthesis. Tolerance to B toxicity has been recognized in a number of crops, notably in cereals. In most cases, tolerance is achieved by reduced uptake of B into the root, which then leads to reduced uptake into the shoot. Genetic studies established that in barley, a locus associated with reduced tissue B occurred on chromosome 4 and that this locus could be transferred to other barley cultivars with desirable agronomic traits.2Hayes and Reid3 made a careful study of the characteristics of B uptake in a highly tolerant landrace barley cultivar Sahara, and found that although B was highly permeable, the root B concentration in this cultivar could be maintained at only half that in the external medium, whereas in sensitive cultivars, B was the same in both intracellular and extracellular phases. It was concluded that tolerant cultivars must have a membrane active transporter that exports B from the root. A B exporter, AtBor1 had previously been discovered in Arabidopsis where it was involved in B loading into the xylem4 but it was later found to be degraded under high B conditions5 and therefore would not be useful in B tolerance.However, other Bor1 homologues were subsequently discovered in Arabidopsis and in rice. Based on homology with rice, Reid6 cloned genes from barley and from wheat (HvBor2 and Tabor2 respectively) which were shown to be strongly upregulated in roots of tolerant cultivars, and virtually undetectable in sensitive cultivars. Thus, a simple mechanism to explain tolerance was established; efflux of B from the root reduced the intracellular concentration of B in the root cells, thereby reducing toxicity and improving root growth. At the same time, the lower root content meant that less B was transferred to the shoot, resulting in lower shoot toxicity.Yet there remained several unanswered questions regarding B toxicity. Firstly, it was commonly observed that toxicity symptoms were not reliably correlated with leaf B concentration, and that often after rain, toxicity symptoms became less severe. Nable et al.7 had investigated the effect of rain on shoot B concentrations and concluded that although rain did reduce the B concentration in leaves, it did not affect growth and yield. Secondly, field trials with cultivars in which the B tolerance traits were expressed, did not show the improvements in growth and yield that could be observed in glasshouse trials.8,9Our recent work10 has provided new insights into these phenomena. Sensitive and tolerant cultivars of both wheat and barley were grown in varying levels of B. Then, ignoring the level of B in the growth solution, leaves of the different cultivars that displayed the same degree of leaf necrosis were selected. This revealed that in the tolerant cultivars, necrosis began to appear at leaf B levels that were two-to five-fold higher than in sensitive cultivars. Since no internal tolerance mechanism had been reported, it was hypothesised that in the tolerant cultivars, internal toxicity was reduced by pumping B from the cytoplasm into the cell wall where B is much less toxic. To prove this hypothesis three types of experiment were conducted. Firstly protoplasts were isolated from leaves of tolerant and sensitive cultivars of barley, and it was shown that when incubated in the same concentration of B, the tolerant cultivar was able to reduce the intracellular B concentration to approximately half that of the sensitive cultivar. Secondly, it was reasoned that if more B was accumulated in the apoplast of the tolerant cultivar, then it should be more quickly released by washing of the leaf; this was confirmed. Thirdly, it was shown that the same efflux transporters that were responsible for B export from the root were also highly expressed in leaves of tolerant cultivars of wheat and barley. The combination of these three experiments provided compelling evidence that redistribution of B in the leaf was a significant factor in B tolerance.The elution experiment also highlighted the fact that because B is highly soluble and has high membrane permeability, it can easily be washed from leaves. Obviously in the field B could be removed from leaves by rain, but no positive effect of this on growth had been quantified. In our experiments, we simulated the average rainfall during the early growing season in a high B region of Southern Australia by spraying plants with calibrated amounts of water for 16 d. At high B concentrations, rain reduced leaf B by around 50% while simultaneously improving growth of shoots by up to 90%. Rather surprisingly, the rain treatment, which had no significant effect on root B concentrations, caused a two-fold increase in root growth, presumably by improving the supply of photosynthate from the shoot.This study has enabled an evaluation of the importance of three main factors in determining the severity of B toxicity; two genetically determined processes, efflux pumping of B in roots and leaves, coupled with the variable leaching of B from leaves by rain (Fig. 1). The results also provide an explanation for the poor correlations observed between toxicity and shoot B concentrations in cereals.7,11Open in a separate windowFigure 1Summary of processes contributing to reduced B toxicity in wheat and barley. The intensity of shading indicates the level of B in different regions of the plant. Boron (B) enters the leaf via the xylem and continues to accumulate as the leaf grows. When plants are grown in high concentrations of B, the older parts of the leaf become necrotic first while the younger basal tissues continue to expand. In tolerant cultivars, B efflux transporters in leaves pump B from the cytoplasm where it is toxic into the cell walls where it can be tolerated at high concentrations. Sensitive cultivars have a very low capacity for B efflux and therefore retain much higher concentrations inside the cell than in tolerant cultivars. rain can remove large amounts of B from leaves, thereby alleviating toxicity. In roots of tolerant cultivars, the same B efflux transporters that occur in leaves are used to pump B from the cells into the external medium. This reduces the toxicity to roots and limits the amount of B entering the xylem and reaching the leaves.  相似文献   

19.
Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport. Here, we show that boron-induced ubiquitination is required for vacuolar sorting of BOR1. We found that a substitution of lysine 590 with alanine (K590A) in BOR1 blocked degradation. BOR1 was mono- or diubiquitinated within several minutes after applying a high concentration of boron, whereas the K590A mutant was not. The K590A mutation abolished vacuolar transport of BOR1 but did not apparently affect polar localization to the inner PM domains. Furthermore, brefeldin A and wortmannin treatment suggested that Lys-590 is required for BOR1 translocation from an early endosomal compartment to multivesicular bodies. Our results show that boron-induced ubiquitination of BOR1 is not required for endocytosis from the PM but is crucial for the sorting of internalized BOR1 to multivesicular bodies for subsequent degradation in vacuoles.  相似文献   

20.
硼在植物体内生理功能研究进展(综述)   总被引:11,自引:0,他引:11  
本文论述近年来硼在植物体内的主要生理功能及硼胁迫对植物影响的研究进展,认为硼与植物体内多种代谢活动密切相关,对维持细胞结构稳定性具有重要作用,但硼只是间接参与这些代谢活动,春作用机理仍有待进一步探究,并对今后的研究重点提出见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号