首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Eukaryotic DNA polymerases in DNA replication and DNA repair   总被引:16,自引:0,他引:16  
DNA polymerases carry out a large variety of synthetic transactions during DNA replication, DNA recombination and DNA repair. Substrates for DNA polymerases vary from single nucleotide gaps to kilobase size gaps and from relatively simple gapped structures to complex replication forks in which two strands need to be replicated simultaneously. Consequently, one would expect the cell to have developed a well-defined set of DNA polymerases with each one uniquely adapted for a specific pathway. And to some degree this turns out to be the case. However, in addition we seem to find a large degree of cross-functionality of DNA polymerases in these different pathways. DNA polymerase α is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. In most organisms no specific repair role beyond that of checkpoint control has been assigned to this enzyme. DNA polymerase δ functions as a dimer and, therefore, may be responsible for both leading and lagging strand DNA replication. In addition, this enzyme is required for mismatch repair and, together with DNA polymerase ζ, for mutagenesis. The function of DNA polymerase ɛ in DNA replication may be restricted to that of Okazaki fragment maturation. In contrast, either polymerase δ or ɛ suffices for the repair of UV-induced damage. The role of DNA polymerase β in base-excision repair is well established for mammalian systems, but in yeast, DNA polymerase δ appears to fullfill that function. Received: 20 April 1998 / Accepted: 8 May 1998  相似文献   

2.
Function of DNA Polymerase III in DNA Replication   总被引:30,自引:0,他引:30  
RECENTLY an in vitro system for DNA replication has been described. This system could be divided into two fractions (A and B) both of which are necessary for proper DNA replication1. Fraction A, the “soluble” fraction, contains those proteins which do not tightly bind to membranes or native DNA. Fraction B, the “insoluble” fraction, consists of DNA and membranous structures and proteins which are bound to either of them. It was shown that the soluble fraction contains at least one component which is needed at about in vivo concentration1. Studies of one such component are described in the following.  相似文献   

3.
Accuracy of DNA polymerase-alpha in copying natural DNA   总被引:11,自引:1,他引:10       下载免费PDF全文
The fidelity of DNA polymerase-alpha from calf thymus (9S enzyme) in copying bacteriophage phi174am16 DNA in vitro has been determined from the frequency of production of different revertants. In the self-priming reaction we were able to measure the frequencies of base pairing mismatches during the course of replication on biasing the ratios of deoxynucleoside triphosphates. The frequency of dGTP:T, dGTP:G and dATP:G mismatches were 7.6 x 10(-5), 4.4 x 10(-5) and 2.8 x 10(-5), respectively, at equal concentrations of the deoxynucleoside triphosphates. dCTP:A, dGTP:A, dCTP:T and dTTP:T mismatches were below the limit of detection (<5 x 10(-6)). A synthetic dodecamer primer with a 3' end covering the first two bases of the amber codon was used to determine the misinsertion frequency of the first nucleotide incorporated. This gave a misinsertion frequency of 1.5 x 10(-4) for the dGTP:T mismatch, which is slightly higher than that observed from the pool bias studies. Further, it showed no sensitivity to biasing the nucleotide pool, suggesting a different mechanism for the incorporation of the first nucleotide. These data do not support 'energy-relay'-like models for achieving high accuracy in eukaryotes. The observed misinsertion frequencies were corrected for mismatch repair of the heteroduplexes during the transfection experiments by parallel experiments using a mismatched primer. This was synthesized to have the same G:T mismatch as produced in the preceding experiment.  相似文献   

4.
Taxol is a valuable plant-derived drug showing activity against various cancer types. Worldwide efforts had been made to overcome the supply problem, because the supply by isolation from the bark of the slow-growing yew trees is limited. Plant cell cultures as well as chemical and biotechnological semisynthesis are processes, which are intensively investigated for the production of taxanes paclitaxel (Taxol) and docetaxel (Taxotere) in the last few years. This article provides a comparison of the current research on taxane biosynthesis and production in yew cell cultures.  相似文献   

5.
6.
DNA ligases in the repair and replication of DNA   总被引:1,自引:0,他引:1  
DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA.Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.  相似文献   

7.
8.
Present-day contamination can lead to false conclusions in ancient DNA studies. A number of methods are available to estimate contamination, which use a variety of signals and are appropriate for different types of data. Here an overview of currently available methods highlighting their strengths and weaknesses is provided, and a classification based on the signals used to estimate contamination is proposed. This overview aims at enabling researchers to choose the most appropriate methods for their dataset. Based on this classification, potential avenues for the further development of methods are discussed.  相似文献   

9.
10.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

11.
12.
13.
Park JY  Ahn B 《FEBS letters》2000,476(3):174-178
Escherichia coli nucleotide excision repair (NER) is responsible for removing bulky DNA adducts by dual incisions of the UvrABC endonuclease. Although the activity of the UvrAB complex which can induce DNA conformational change is employed in NER, the involvement of DNA topology and DNA topoisomerases remains unclear. We examined the effect of topoisomerase inhibitions on a NER in vivo system. The repair analysis of intracellular plasmid revealed that the DNA damage on positive supercoils generated by gyrase inhibition remained unrepaired, whereas the DNA damage was repaired in topoisomerase I mutants. These results suggest that DNA topology affects the NER process and the removal of positive supercoils by gyrase is vital for the efficiency of the E. coli NER system.  相似文献   

14.
15.
16.
The mitochondrial respiratory chain inevitably produces reactive oxygen species as byproducts of aerobic ATP synthesis. Mitochondrial DNA (mtDNA), which is located close to the respiratory chain, is reported to contain much more 8-oxoguanine (8-oxoG), an oxidatively modified guanine base, than nuclear DNA. Despite such a high amount of 8-oxoG in mtDNA (1-2 8-oxoG/10(4) G), mtDNA is barely cleaved by an 8-oxoG DNA glycosylase or MutM, which specifically excises 8-oxoG from a C:8-oxoG pair. We find here that about half of human mtDNA molecules are cleaved by another 8-oxoG-recognizing enzyme, an adenine DNA glycosylase or MutY, which excises adenine from an A:8-oxoG pair. The cleavage sites are mapped to adenines. The calculated number of MutY-sensitive sites in mtDNA is approximately 1.4/10(4) G. This value roughly corresponds with the electrochemically measured amount of 8-oxoG in mtDNA (2.2/10(4) G), raising the possibility that 8-oxoG mainly accumulates as an A:8-oxoG pair.  相似文献   

17.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号