首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
2.
3.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

4.
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.  相似文献   

5.
DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways.  相似文献   

6.
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance.  相似文献   

7.
跨损伤合成的DNA聚合酶——一类新的DNA聚合酶   总被引:1,自引:0,他引:1  
细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合成,并且从细菌到人在进化上功能保守.  相似文献   

8.
XPC has long been considered instrumental in DNA damage recognition during global genome nucleotide excision repair (GG-NER). While this recognition is crucial for organismal health and survival, as XPC’s recognition of lesions stimulates global genomic repair, more recent lines of research have uncovered many new non-canonical pathways in which XPC plays a role, such as base excision repair (BER), chromatin remodeling, cell signaling, proteolytic degradation, and cellular viability. Since the first discovery of its yeast homolog, Rad4, the involvement of XPC in cellular regulation has expanded considerably. Indeed, our understanding appears to barely scratch the surface of the incredible potential influence of XPC on maintaining proper cellular function. Here, we first review the canonical role of XPC in lesion recognition and then explore the new world of XPC function.  相似文献   

9.
Many tumor suppressors play an important role in the DNA damage pathway. Zinc finger protein 668 (ZNF668) has recently been identified as one of the potential tumor suppressors in breast cancer, but its function in DNA damage response is unknown. Herein, we report that ZNF668 is a regulator of DNA repair. ZNF668 knockdown impairs cell survival after DNA damage without affecting the ATM/ATR DNA-damage signaling cascade. However, recruitment of repair proteins to DNA lesions is decreased. In response to IR, ZNF668 knockdown reduces Tip60-H2AX interaction and impairs IR-induced histone H2AX hyperacetylation, thus impairing chromatin relaxation. Impaired chromatin relaxation causes decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after IR. In addition, ZNF668 knockdown decreased RPA phosphorylation and its recruitment to DNA damage foci in response to UV. In both IR and UV damage responses, chromatin relaxation counteracted the impaired loading of repair proteins and DNA repair defects in ZNF668-deficient U2OS cells, indicating that impeded chromatin accessibility at sites of DNA breaks caused the DNA repair defects observed in the absence of ZNF668. Our findings suggest that ZNF668 is a key molecule that links chromatin relaxation with DNA damage response in DNA repair control.  相似文献   

10.
11.
12.
生物体在正常生命过程中面临内/外因来源的DNA损伤,DNA损伤不仅影响基因正确复制,也阻碍其正常转录. 为避免DNA损伤带来的灾难性后果,生物体进化出一整套修复机制,以保证复制和转录的正确性、基因组的完整性和遗传的稳定性. 本文重点综述了RNA聚合酶监视(RNA polymerase-surveilled,RNAP-S)的DNA修复机制. 首先从RNA聚合酶(RNA polymerase,RNAP)的结构出发介绍了RNAP对DNA损伤的感知机制;其次讨论了滞留RNAP的回溯、与其模板DNA的解离以及后续修复机制的启动,真核细胞科凯恩综合征B蛋白(Cockayne syndrome protein B,CSB)及其泛素化和8-氧代鸟嘌呤DNA糖基化酶1(8-oxoguanine DNA glycosylase1,OGG1)介导的RNAP-S修复;最后探讨了RNAP-S损伤修复的生物学意义并展望其前景.  相似文献   

13.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

14.
DNA repair and apoptosis lead to principally different final results: the first mechanism removes damages from DNA, restoring genome integrity; the second mechanism eliminates potentially dangerous cells harboring DNA lesions. The cells deficient in mismatch repair (MMR) demonstrate inceased resistance (viability) to DNA-damaging agents due to decreased ability to undergo apoptosis. This means that mechanism of MMR both restores structure of DNA and generates a signal for apoptosis. DNA breaks and single strand gaps, which are temporarily produced by excison mechanism during DNA repair, are suggested to be the initial signals for apoptosis. However pathway involved in such signaling at least partially is independent of p53 function.  相似文献   

15.
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.  相似文献   

16.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

17.
Mammalian cells are constantly threatened by multiple types of DNA lesions arising from various sources like irradiation, environmental agents, replication errors or by-products of the normal cellular metabolism. If not readily detected and repaired these lesions can lead to cell death or to the transformation of cells giving rise to life-threatening diseases like cancer. Multiple specialized repair pathways have evolved to preserve the genetic integrity of a cell. The increasing number of DNA damage sensors, checkpoint regulators, and repair factors identified in the numerous interconnected repair pathways raises the question of how DNA repair is coordinated. In the last decade, various methods have been developed that allow the induction of DNA lesions and subsequent real-time analysis of repair factor assembly at DNA repair sites in living cells. This combination of biophysical and molecular cell biology methods has yielded interesting new insights into the order and kinetics of protein recruitment and identified regulatory sequences and selective loading platforms for the efficient restoration of the genetic and epigenetic integrity of mammalian cells.  相似文献   

18.
19.
DNA修复酶是一类能保护生物体免受各种DNA损伤的毒性效应和保证遗传信息完整性的重要酶蛋白。近年来对DNA修复酶晶体结构的研究揭示了一些结构基序参与了酶蛋白与特定DNA损伤的识别过程,这些研究结果促进了对修复特定DNA损伤的作用机理和结构基础的认识和了解。本文综述了这方面的研究进展。  相似文献   

20.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号