首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bleomycin (BLM) is used clinically in combination with a number of other agents for the treatment of several types of tumours. Members of the BLM family of drugs include zorbamycin (ZBM), phleomycin D1, BLM A2 and BLM B2. By manipulating the BLM biosynthetic machinery, we have produced two new BLM analogues, BLM Z and 6′-deoxy-BLM Z, with the latter exhibiting significantly improved DNA cleavage activity. Here we determined the DNA sequence specificity of BLM Z, 6′-deoxy-BLM Z and ZBM, in comparison with BLM, with high precision using purified plasmid DNA and our recently developed technique. It was found that ZBM had a different DNA sequence specificity compared with BLM and the BLM analogues. While BLM and the BLM analogues showed a similar DNA sequence specificity, with TGTA sequences as the main site of cleavage, ZBM exhibited a distinct DNA sequence specificity, with both TGTA and TGTG as the predominant cleavage sites. These differences in DNA sequence specificity are discussed in relation to the structures of ZBM, BLM and the BLM analogues. Our findings support the strategy of manipulating the BLM biosynthetic machinery for the production of novel BLM analogues, difficult to prepare by total synthesis; some of which could have beneficial cancer chemotherapeutic properties.  相似文献   

2.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

3.
通过光谱分析、粘度测定及~1HNMR研究证实:博安霉素(BleomycinA_6,BLMA_6)是通过双噻唑基嵌插入碱基对之间与DNA结合的。同时测定了BLMA_6与DNA的结合常数、结合位点数并与博莱霉素A_2(BLMA_2)、A_5(BLMA_5)进行了比较,证实了末端胺基对BLMA_6与DNA结合的贡献,琼脂糖凝胶电泳对BLMA_6及其Cu(Ⅱ)、Fe(Ⅱ)络合物断裂DNA的研究表明,在DNA断裂中某种氧自由基的存在及金属螯合部位与DNA嵌插部位之间的相互影响,对于BLMA_6及同系物对小鼠肺毒性的差异与不同尾链结构的关系进行了探讨。  相似文献   

4.
Previous studies have indicated that the methylvalerate subunit of bleomycin (BLM) plays an important role in facilitating DNA cleavage by BLM and deglycoBLM. Eleven methylvalerate analogues have been synthesized and incorporated into deglycoBLM congeners by the use of solid-phase synthesis. The effect of the valerate moiety in the deglycoBLM analogues has been studied by comparison with the parent deglycoBLM A(5) using supercoiled DNA relaxation and sequence-selective DNA cleavage assays. All of the deglycoBLM analogues were found to effect the relaxation of the plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A(5). Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage.  相似文献   

5.
Promiscuous mutant EcoRI endonucleases produce lethal to sublethal effects because they cleave Escherichia coli DNA despite the presence of the EcoRI methylase. Three promiscuous mutant forms, Ala138Thr, Glu192Lys and His114Tyr, have been characterized with respect to their binding affinities and first-order cleavage rate constants towards the three classes of DNA sites: specific, miscognate (EcoRI*) and non-specific. We have made the unanticipated and counterintuitive observations that the mutant restriction endonucleases that exhibit relaxed specificity in vivo nevertheless bind more tightly than the wild-type enzyme to the specific recognition sequence in vitro, and show even greater preference for binding to the cognate GAATTC site over miscognate sites. Binding preference for EcoRI* over non-specific DNA is also improved. The first-order cleavage rate constants of the mutant enzymes are normal for the cognate site GAATTC, but are greater than those of the wild-type enzyme at EcoRI* sites. Thus, the mutant enzymes use two mechanisms to partially bypass the multiple fail-safe mechanisms that protect against cleavage of genomic DNA in cells carrying the wild-type EcoRI restriction-modification system: (a) binding to EcoRI* sites is more probable than for wild-type enzyme because non-specific DNA is less effective as a competitive inhibitor; (b) the combination of increased affinity and elevated cleavage rate constants at EcoRI* sites makes double-strand cleavage of these sites a more probable outcome than it is for the wild-type enzyme. Semi-quantitative estimates of rates of EcoRI* site cleavage in vivo, predicted using the binding and cleavage constants measured in vitro, are in accord with the observed lethal phenotypes associated with the three mutations.  相似文献   

6.
Restriction endonucleases have proven to be especially resistant to engineering altered substrate specificity, in part, due to the requirement of a cognate DNA methyltransferase for cellular DNA protection. The thermophilic restriction endonuclease BstYI recognizes and cleaves all hexanucleotide sequences described by 5'-R GATCY-3' (where R=A or G and Y=C or T). The recognition of a degenerate sequence is a relatively common feature of the more than 3000 characterized restriction endonucleases. However, very little is known concerning substrate recognition by such an enzyme. Our objective was to investigate the substrate specificity of BstYI by attempting to increase the specificity to recognition of only AGATCT. By a novel genetic selection/screening process, two BstYI variants were isolated with a preference for AGATCT cleavage. A fundamental element of the selection process is modification of the Escherichia coli host genomic DNA by the BglII N4-cytosine methyltransferase to protect AGATCT sites. The amino acid substitutions resulting in a partial change of specificity were identified and combined into one superior variant designated NN1. BstYI variant NN1 displays a 12-fold preference for cleavage of AGATCT over AGATCC or GGATCT. Moreover, cleavage of the GGATCC sequence is no longer detected. This study provides further evidence that laboratory evolution strategies offer a powerful alternative to structure-guided protein design.  相似文献   

7.
Bleomycin (BLM) binding and chemistry are apparently sensitive to differences in nucleic acid conformation and could conceivably be developed as a probe for sequence-dependent elements of conformation. We report on the development of a new methodology to synthesize heterogeneous DNA-RNA hybrids of defined sequence and present the results of our comparative studies on the cleavage of DNA and DNA-RNA hybrids by four drugs: BLM, neocarzinostatin and esperamicins A1 and C. In the case of BLM with duplex DNA, purine-pyrimidine steps such as GT and GC, are consistently hit, as previously observed. However, in heterogeneous sequence hybrids, not all GC sites are recognized by the drug, although all GT sites are. Suppressed GC sites are consistently flanked by pyrimidines on both the 3' and 5' sides, suggesting that the BLM binding site in hybrids spans at least four bases. Kinetic isotope studies with specifically deuterated substrates (kH/kD = 1.2-4.0) and the effect of oxygen on the product profile are presented in support of a mechanism consistent with 4'-hydrogen abstraction in hybrids. The powerful double-labeled probe technique was extended to study the mechanism of action of other DNA degrading drugs on DNA-RNA hybrids. For neocarzinostatin, the sequence specificity lies in the AT-rich region for hybrids and is similar to that of DNA, however, the overall cleavage pattern for the hybrid is significantly different from that for the same sequence of DNA. In the hybrid, a stretch of AT residues is essential and the A sites are damaged to a greater extent than they are in DNA. However, no kinetic isotope effects are observed and, based on the product profile, the mechanism of degradation of the DNA strand of hybrids seems to be limited to abstraction of the 5'-hydrogen. For esperamicin A1, damage on the DNA strand of hybrids occurs exclusively via 5'-hydrogen abstraction in a non-rate determining step and primarily at A and T sites. Esperamicin C behaves similarly, exhibiting no isotope effects at 1', 4' and 5' positions. Overall, the differences observed in site-specific cleavage between the two substrates is proposed to be a result of conformational differences between the DNA strand of duplex DNA and DNA-RNA hybrids.  相似文献   

8.
The specific nucleotide recognition and sequence-specific cleavage of DNA by bleomycin (BLM) antibiotics are a typical example of macromolecular receptor-drug interaction in the field of chemotherapy. The present results demonstrate that ethidium bromide, distamycin A, and actinomycin D evidently altered the nucleotide sequence-specific mode of DNA breakage by the iron-BLM system, which cleaves isolated DNA preferentially at G-C (5' leads to 3') and G-T (5' leads to 3') sequences. In the presence of ethidium bromide, the most preferred cleavage site was the sequence G-T at position 52 to 53. Of special interest is marked alteration of the nucleotide sequence-specific mode by distamycin A. This intercalator masked the cleavages at G-T and G-A sequences, and produced higher specificity for G-C sequences than that of iron-BLM only. In the case of actinomycin D, the preferred sequence groups of DNA breakage were shifted from G-C sequences to G-A (43 to 44) and G-T (52 to 53) sequences. Certain intercalating agents are very available for the investigations of site-specific recognition and cleavage of DNA by DNA-cleaving drugs such as BLM.  相似文献   

9.
The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was determined with high precision in purified plasmid DNA using an improved technique. This improved technique involved the labelling of the 5′- and 3′-ends of DNA with different fluorescent tags, followed by simultaneous cleavage by bleomycin and capillary electrophoresis with laser-induced fluorescence. This permitted the determination of bleomycin cleavage specificity with high accuracy since end-label bias was greatly reduced. Bleomycin produces single- and double-strand breaks, abasic sites and other base damage in DNA. This high-precision method was utilised to elucidate, for the first time, the DNA sequence specificity of bleomycin-induced DNA damage at abasic sites. This was accomplished using endonuclease IV that cleaves DNA at abasic sites after bleomycin damage. It was found that bleomycin-induced abasic sites formed at 5′-GC and 5′-GT sites while bleomycin-induced phosphodiester strand breaks formed mainly at 5′-GT dinucleotides. Since bleomycin-induced abasic sites are produced in the absence of molecular oxygen, this difference in DNA sequence specificity could be important in hypoxic tumour cells.  相似文献   

10.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RECQ-like helicase that is presumed to function in mammalian DNA replication, recombination, or repair. We show here that BLM, but not the related RECQ-like helicase WRN, is rapidly cleaved in cells undergoing apoptosis. BLM was cleaved to 47- and 110-kDa major fragments, with kinetics similar to the apoptotic cleavage of poly(A)DP-ribose polymerase. BLM cleavage was prevented by a caspase 3 inhibitor and did not occur in caspase 3-deficient cells. Moreover, recombinant BLM was cleaved to 47- and 110-kDa fragments by caspase 3, but not caspase 6, in vitro. The caspase 3 recognition sequence (412)TEVD(415) was verified by mutating aspartate 415 to glycine and showing that this mutation rendered BLM resistant to caspase 3 cleavage. Cleavage did not abolish the BLM helicase activity but abolished BLM nuclear foci and the association of BLM with condensed DNA and the insoluble matrix. The results suggest that BLM, but not WRN, is an early selected target during the execution of apoptosis.  相似文献   

11.
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove‐binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA “shape readout” properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT‐rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT‐rich DNA duplex d[5′‐G2A6T6C2‐3′]. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two‐binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy‐driven with a binding constant of approximately 108 M?1. ITC‐derived binding enthalpies were used to obtain the binding‐induced change in heat capacity (ΔCp) of ?225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT‐tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT‐rich DNA (d[5′‐G2A6T6C2‐3′]) >B form alternate AT‐rich DNA (d[5′‐G2(AT)6C2‐3′]) > A form GC‐rich DNA (d[5′‐A2G6C6T2‐3′]), demonstrating the preference of ligand 1 for B* form DNA. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 720–732, 2014.  相似文献   

12.
The genes encoding restriction-modification system of unknown specificity Hin4II from Haemophilus influenzae RFL4 were cloned in Escherichia coli and sequenced. The Hin4II system comprises three tandemly arranged genes coding for m6A DNA methyltransferase, m5C DNA methyltransferase and restriction endonuclease, respectively. Restriction endonuclease was expressed in E. coli and purified to apparent homogeneity. The DNA recognition sequence and cleavage positions were determined. R.Hin4II recognizes the novel non-palindromic sequence 5'-CCTTC-3' and cleaves the DNA 6 and 5 nt downstream in the top and bottom strand, respectively. The new prototype restriction endonuclease Hin4II was classified as a potential candidate of HNH nuclease family after comparison against SMART database. An amino acid sequence motif 297H-X14-N-X8-H of Hin4II was proposed as forming a putative catalytic center.  相似文献   

13.
The sequence specificity of topoisomerase-II-mediated DNA cleavage, stimulated by 2-methyl-9-hydroxy ellipticinium and 4′, 5′,7-trihydroyflavone (genistein) was investigated by sequencing analysis of DNA cleavage sites and molecular modeling techniques. The former drug exhibits a marked preference for a T base at the position immediately preceding the cleavage site (?1). The latter shares the preference for the same base, with an additional preference for a thymine at position +1. The cleavage intensity patterns for the two drugs differ considerably. From a conformational point of view, ellipticinium and genistein exhibit similar overall shape and dimensions. However, the fused ring system in the former generates a planar structure whereas the single bond, connecting the two aromatic portions in the latter, allows internal rotation. The most stable conformation of genistein corresponds to a deviation of about 40° from planarity. A computer-assisted analysis was carried out to compare the steric and electrostatic properties of the two compounds. Two types of preferred (energetically almost degenerate) alignment for the two molecules were found. One corresponds to overlapping of the 9-hydroxyl containing ring of ellipticinium with the 4′-hydroxyphenyl moiety of genistein, the other envisages the same moiety of ellipticine superimposed to the hydroxyl-benzopyrone portion of genistein. The structural similarities of the test drugs might account for the common preference for stimulation of DNA cleavage at position +1, whereas the different possible arrangements of genistein in the cleavable complex could explain both the additional +1 specificity exhibited by this compound and the differences in cleavage intensity patterns observed in comparison to ellipticinium.  相似文献   

14.
Yeast cells expressing the Glu418Lys human topoisomerase I mutant display a camptothecin resistance that slowly decreases as a function of time. Molecular characterization of the single steps of the catalytic cycle of the purified mutant indicates that it has a relaxation activity identical to the wild-type protein but a different DNA sequence specificity for the cleavage sites when compared to the wild-type enzyme, as assayed on several substrates. In particular the mutant has a low specificity for CPT sensitive cleavable sites. In fact, the mutant has, at variance of the wild-type enzyme, a reduced preference for cleavage sites having a thymine base in position −1 of the scissile strand. This preference, together with the strict requirement for a thymine base in position −1 for an efficient camptothecin binding, explains the temporary camptothecin resistance of the yeast cell expressing the mutant and points out the importance of the DNA sequence in the binding of the camptothecin drug.  相似文献   

15.
Abstract

A number of different energy transfer dye labeled-cassettes were synthesized using aminoacid based trifunctional linkers and coupled to the propargylamino-substituted dideoxynucleoside-5′-triphosphates (ddNTPs). These terminators were evaluated for their energy transfer efficiency and DNA sequencing potential using thermostable DNA polymerase.  相似文献   

16.
Ionizing radiation (IR) and bleomycin (BLM) are used to treat various types of cancers. Both agents generate cytotoxic double strand breaks (DSB) and abasic (apurinic/apyrimidinic (AP)) sites in DNA. The human AP endonuclease Ape1 acts on abasic or 3'-blocking DNA lesions such as those generated by IR or BLM. We examined the effect of siRNA-mediated Ape1 suppression on DNA repair and cellular resistance to IR or BLM in human B-lymphoblastoid TK6 cells and HCT116 colon tumor cells. Partial Ape1 deficiency (~30% of normal levels) sensitized cells more dramatically to BLM than to IR cytotoxicity. In both cases, expression of the unrelated yeast AP endonuclease, Apn1, largely restored resistance. Ape1 deficiency increased DNA AP site accumulation due to IR treatment but reduced the number of DSB. In contrast, for BLM, there were more DSB under Ape1 deficiency, with little change in the accumulation of AP sites. Although the role of Ape1 in generating DSB was greater for IR, the enzyme facilitated removal of AP sites, which may mitigate the cytotoxic effects of IR. In contrast, BLM generates scattered AP sites, and the DSB have 3'-phosphoglycolate termini that require Ape1 processing. These DSB persist under Ape1 deficiency. Apoptosis induced by BLM (but not by IR) under Ape1 deficiency was partially p53-dependent, more dramatically in TK6 than HCT116 cells. Thus, Ape1 suppression or inhibition may be a more efficacious adjuvant for BLM than for IR cancer therapy, particularly for tumors with a functional p53 pathway.  相似文献   

17.
New restriction endonuclease CviRI cleaves DNA at TG/CA sequences.   总被引:1,自引:0,他引:1       下载免费PDF全文
A new type II restriction endonuclease, CviRI, was isolated from virus XZ-6E infected chlorella cells. CviRI is the first restriction endonuclease to recognize the sequence 5'-TGCA-3' and cleaves DNA between the G and C residues to produce blunt-end termini. Methylation of the adenine or cytosine in 5'-TGCA-3' sequences prevents CviRI cleavage. Due to its sequence specificity, CviRI may be especially useful for detecting mutant alleles of many heritable human genetic diseases.  相似文献   

18.
Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6′ in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1′ (with a ~ 32–93% preference for leucine depending on the MMP), and basic and small residues in P2′ and P3′, respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1′ leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1′-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with leucine locked in S1′. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.  相似文献   

19.
Abstract

Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5′-dGpdC-3′ sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5′- flanking base was a pyrimidine and the 3′-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5′- TGGG-3′.  相似文献   

20.
Extensive genomic heterogeneity was detected in the restriction endonuclease cleavage patterns of DNA from five entomopoxvirus isolates and vaccinia virus, strain WR. An 8.2 kilobase pair extra-chromosomal element was detected in Amsacta moorei entomopoxvirus and a 22 kilobase pair extra-chromosomal DNA element was isolated from Choristoneura biennis EPV. The extent of DNA base sequence homology was determined by Southern hybridization of HindIII and BamHI DNA restriction fragments of C. biennis EPV DNA and A. moorei EPV DNA with (α32P)-labeledA. moorei EPV DNA. Methylation of 5′-CmCGG-3′ sequences was not detected in the DNA of A. moorei, C. biennis, E. auxiliaris, M. sanguinipes, and A. conspersa entomopoxviruses after cleavage of the viral DNAs with MspI and HpaII restriction endonucleases. Based upon the DNA base sequence homology data presented here, the five entomopoxviruses used in this study appear to be unrelated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号