首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (CAL-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-h post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.  相似文献   

3.
4.
The present study was designed to investigate the anticancer activity of novel nine small peptides (compounds 19) derived from TT-232, a somatostatin structural analogue, by analyzing the inhibition of mammalian DNA polymerase (pol) and human cancer cell growth. Among the compounds tested, compounds 3 [tert-butyloxycarbonyl (Boc)-Tyr-Phe-1-naphthylamide], 4 (Boc-Tyr-Ile-1-naphthylamide), 5 (Boc-Tyr-Leu-1-naphthylamide) and 6 (Boc-Tyr-Val-1-naphthylamide) containing tyrosine (Tyr) but no carboxyl groups, selectively inhibited the activity of rat pol β, which is a DNA repair-related pol. Compounds 36 strongly inhibited the growth of human colon carcinoma HCT116 p53+/+ cells. The influence of compounds 19 on HCT116 p53?/? cell growth was similar to that observed for HCT116 p53+/+ cells. These results suggest that the cancer cell growth suppression induced by these compounds might be related to their inhibition of pol. Compound 4 was the strongest inhibitor of pol β and cancer cell growth among the nine compounds tested. This compound specifically inhibited rat pol β activity, but had no effect on the other 10 mammalian pols investigated. Compound 4 combined with methyl methane sulfonate (MMS) treatment synergistically suppressed HCT116 p53?/? cell growth compared with MMS alone. This compound also induced apoptosis in HCT116 cells with or without p53. From these results, the influence of compound 4, a specific pol β inhibitor, on the relationship between DNA repair and cancer cell growth is discussed.  相似文献   

5.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

6.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

7.

Background

Statins, the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors with cholesterol-lowering properties, were recently shown to exhibit anti-cancer effects. However, the molecular mechanism underlying statin-induced cancer cell death remains to be elucidated. Elevated level of survivin is often found over-expressed in human cancers and has been implicated in the progression of tumorigenesis. Given its central role in cell division and action as an apoptosis suppressor, survivin represents a potential molecular target in cancer management.

Methods

In this study, we explored the underlying mechanisms in simvastatin-induced HCT116 colorectal cancer cell apoptosis.

Results

Simvastatin decreased cell viability and induced cell apoptosis in HCT116 cells. These results are associated with the modulation of p21cip/Waf1 and survivin. Survivin knockdown using survivin siRNAs also decreased cell viability and induced cell apoptosis. Simvastatin's actions on p21cip/Waf1, survivin and apoptosis were reduced in p53 null HCT116 cells. Simvastatin caused an increase in p53 phosphorylation and acetylation. In addition, simvastatin activated p38 mitogen-activated protein kinase (p38MAPK), whereas an inhibitor of p38MAPK signaling abrogated simvastatin's effects of increasing p53 and p21cip/Waf1 promoter luciferase activity. Cell viability and survivin promoter luciferase activity in the presence of simvastatin were also restored by p38MAPK inhibitor. Furthermore, Sp1 binding to the survivin promoter region decreased while p53 and p63 binding to the promoter region increased after simvastatin exposure.

Conclusions

Simvastatin activates the p38MAPK-p53-survivin cascade to cause HCT116 colorectal cancer cell apoptosis.

General significance

This study delineates, in part, the underlying mechanisms of simvastatin in decreasing survivin and subsequent colorectal cancer cell apoptosis.  相似文献   

8.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

9.
The p53 pathway displays a large degree of redundancy in the expression of a number of pro-apoptotic mechanisms following DNA damage that, among others, involves increased expression of several pro-apoptotic genes through transactivation. Spatial and temporal cellular contexts contribute to the complexity of the regulation of apoptosis, hence different genes may show a cell- and tissue-dependent specificity with regard to the regulation of cell death and act in concert or show redundancy with one and another. We used siRNA technology to assess the effect of multiple ablations of documented pro-apoptotic p53 target genes (PPG) in the colorectal cancer cell line HCT116 and generated mice deficient in both of the extrinsic and intrinsic PPGs genes Dr5 and Puma following treatment with chemotherapeutics and ionizing radiation. DR5, Fas, Bax, Bad, Puma and Bnip3L were induced by 5-FU and adriamycin (ADR) in HCT116 cells in a p53-dependent manner. The resulting caspase 3/7 activity in HCT116 cells following treatment were suppressed by ablated expression of the PPGs in the extrinsic as well as the intrinsic pathway. To our surprise, knocking-down any of the PPGs concomitantly with DR5 did not further inhibit caspase 3/7 activity whereas inhibiting DR5-expression in HCT116Bax knockdown (kd) and HCT116Fas kd did, suggesting that these genes act downstream or in synergy with DR5. This was supported by our in vivo observations, since Puma and Dr5 were equally efficient in protecting cells of the spleen from sub-lethal radiation-induced apoptosis but less effective compared with irradiated p53−/− mice. To our surprise, Dr5−/−; Puma−/− mice did not show additive protection from radiation-induced apoptosis in any of the investigated organs. Our data indicates that the intrinsic pathway may rely on extrinsic signals to promote cell death in a cell- and tissue-dependent manner following DNA damage. Furthermore, p53 must rely on mechanisms independent of DR5 and PUMA to initiate apoptosis following γ-radiation in the spleen and thymus in vivo.Key words: p53, KILLER/DR5, PUMA, apoptosis, DNA damage  相似文献   

10.
11.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

12.
A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.  相似文献   

13.
Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.  相似文献   

14.
p53, one of the most commonly mutated genes in human cancers, is thought to be associated with cancer development. Hence, screening and identifying natural or synthetic compounds with anti-cancer activity via p53-independent pathway is one of the most challenging tasks for scientists in this field. Compound JKA97 (methoxy-1-styryl-9H-pyrid-[3,4-b]-indole) is a small molecule synthetic anti-cancer agent, with unknown mechanism(s). In this study we have demonstrated that the anti-cancer activity of JKA97 is associated with apoptotic induction via p53-independent mechanisms. We found that co-incubation of human colon cancer HCT116 cells with JKA97 inhibited HCT116 cell anchorage-independent growth in vitro and tumorigenicity in nude mice and also induced a cell apoptotic response, both in the cell culture model and in a tumorigenesis nude mouse model. Further studies showed that JKA97-induced apoptosis was dramatically impaired in Bax knock-out (Bax(-/-)) HCT116 cells, whereas the knock-out of p53 or PUMA did not show any inhibitory effects. The p53-independent apoptotic induction by JKA97 was confirmed in other colon cancer and hepatocarcinoma cell lines. In addition, our results showed an induction of Bax translocation and cytochrome c release from the mitochondria to the cytosol in HCT116 cells, demonstrating that the compound induces apoptosis through a Bax-initiated mitochondria-dependent pathway. These studies provide a molecular basis for the therapeutic application of JKA97 against human cancers with p53 mutations.  相似文献   

15.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

16.
S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53wt) or being p(HCT-116 p53−/−), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53−/− xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75NTR, p53 and Bax.  相似文献   

17.
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.  相似文献   

18.
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).  相似文献   

19.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

20.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号